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The three-dimensional structure of nanoscale topological spin textures stabilized by the Dzyaloshinskii-

Moriya interaction is governed by the delicate competition between the exchange, demagnetization and 

anisotropy energies. The quantification of such spin textures through direct experimental methods is 

crucial towards understanding the fundamental physics associated with their ordering, as well as their 

manipulation in spintronic devices. Here, we extend the Lorentz transmission electron microscopy 

technique to quantify mixed Bloch/Néel chiral spin textures stabilized by the Dzyaloshinskii-Moriya 

interaction in Co/Pd multilayers. Analysis of the observed intensities under varied imaging conditions 

coupled to corroborative micromagnetic simulations yield vital parameters that dictate the stability and 

properties of the complex spin texture, namely the degree of mixed Bloch/Néel character, the domain 

wall width, the strength of the Dzyaloshinskii-Moriya interaction and the exchange stiffness. This 

approach provides the necessary framework for application of quantitative Lorentz phase microscopy to 

a broad array of topological spin systems. 

Chiral spin configurations such as homochiral Néel walls [1,2] and skyrmions [3–7] have 

garnered intense interest recently for next-generation magnetic-based memory, logic, and sensor 
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applications [8–11]. These spin textures are typically a result of the Dzyaloshinskii-Moriya interaction 

(DMI), an asymmetric exchange interaction that breaks the energy degeneracy between the two 

possible chiralities [12,13]. In a heavy metal/ferromagnetic system with perpendicular magnetic 

anisotropy (PMA), the DMI results from spin-orbit coupling at the interface. In thick PMA films with DMI, 

the exchange and DMI energies favor Bloch and Néel walls, respectively, while the demagnetization 

energy favors a twisted magnetization that minimizes stray fields [14].  The competition between these 

energies can lead to complex domain walls that cannot be described as fully Bloch or Néel [15–17], in 

addition to stabilizing exotic spin topologies such as chiral bobbers [18,19], and plays an essential role in 

the dynamics of chiral domain walls. Specifically, it influences domain wall velocities [20], how they 

interact with defects [21], and, for the case of skyrmions, modifies their Hall angle [16] where, with ideal 

Bloch/Néel mixing, a skyrmion Hall angle of zero can be obtained [22]. Thus, understanding this energy 

balance is required for the development of spintronic devices based on chiral domain walls. The energy 

terms are characterized by the exchange stiffness, exA , the DMI constant, D , and the saturation 

magnetization, sM , which can be extracted from precise measurements of the domain wall spin texture 

given the strength of the uniaxial anisotropy, uK , that may be measured using magnetometry 

techniques. Recently, Legrand et al. [16] and Dovzhenko et al. [17] demonstrated X-ray resonant 

magnetic scattering and nitrogen-vacancy magnetometry as methods to determine the surface structure 

of domain walls, and estimated the thickness dependence of the domain wall structure resulting from 

dipolar and DMI effective fields through comparison of a variety of samples. Yet, both techniques are 

restricted to deduce the domain wall structure from surface states and are unable to measure the 

domain wall width due to resolution limitations, which would provide a direct method to determine the 

strength of the exchange energy in such films.  Therefore, these methods necessitate multiple 

experimental techniques to quantify the complete domain wall structure.  
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Full quantification of the complex three-dimensional spin topography across an individual 

domain wall remains an open challenge. Its resolution is key to facilitate spintronic technologies such as 

spin Hall/torque-based devices capable of manipulating spin textures [23], where chiral domain 

structures play the role of basic information carriers. Lorentz transmission electron microscopy (LTEM) is 

a classic tool to study magnetism [24–28] and has been successfully applied to understand the local spin 

order in materials capable of hosting magnetic skyrmions [4,5,29,30] and other chiral spin textures [1].  

LTEM is directly sensitive to changes in magnetization for electron transparent thin films and, with 

precise control of experimental variables in conjunction with image simulations, can provide 

quantitative information on magnetic domain walls [31–33]. Here, we use LTEM to quantify the mixed-

character of magnetic domain walls in an MgO (2 nm)/Pt (4 nm)/Co (0.7 nm)/[Pd (0.5 nm)/Co (0.7 

nm)]10/Pt (4 nm) stack with a strong DMI [29,34], where 10 is the repetition number of the Pd/Co 

bilayers (Fig. 1(a), inset) [35]. Through systematic fitting of the domain wall intensity profile as a function 

of sample tilt under identical imaging conditions with image simulations, we simultaneously measure 

the domain wall width, w , and the Bloch/Néel mixed-character parameter, η , defined as the thickness-

averaged angle of the plane where spins rotate as they transition from the “up” to the “down” state: 

η=0°/90° corresponds to a Bloch/Néel wall, respectively. Pairing our results to micromagnetic 

simulations enables determination of the DMI strength and the exchange stiffness. 

LTEM is based on the phase shift of the electron wave after crossing the local magnetic flux of a 

thin film sample.  Magnetic contrast is observed when the sample is imaged out-of-focus, where the 

contrast is proportional to the curl of the magnetization in the small defocus limit (SDL) [36]. Here, we 

term Lorentz contrast as the SDL intensity profile that directly corresponds to the magnetization curl, 

while we term Fresnel contrast as the image intensity generated outside the SDL where interference 

effects are non-negligible. Fig. 1(a) shows the magnetization hysteresis loop of the sample studied using 
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vibrating sample magnetometry (VSM), while Fig. 1(b-d) display the spin texture as a function of applied 

field along the marked regions of the hysteresis.  With an applied field of 11 mT (Fig. 1(b)), the magnetic 

state appears dense with a localized fine structure that varies at the scale of ~10 nm. As the magnetic 

field is increased, the spin texture becomes coarser such that narrow magnetic domains with a complex 

wall structure become apparent. At the applied field of 195 mT (Fig. 1(d)), the predominant spin 

structures are skyrmion-like near30 nm in size. The chirality of the Bloch component for the skyrmion-

like textures highlighted in Fig. 1(d) can be of either sign, as indicated by their opposite contrast and by 

the line profiles in Fig. 1(h). 

For magnetic domain walls with a mixed Bloch/Néel structure, there will be significant changes 

to the LTEM intensity when the sample is tilted, depending on the orientation of the wall with respect to 

the tilt axis. Upon lowering the applied field from saturation, isolated domains that can be analyzed 

appear (Fig. 1(e,f)).  Line scans acquired from raw data shown in Fig. 1(g) reveal an asymmetric change in 

the contrast profile by tilting the sample. The profile at tilt appears mostly Néel-like, with only small 

Bloch contributions. This is a clear indication of a mixed-character domain wall and motivates analysis of 

the tilt dependent contrast to quantify the degree of mixing. 

In a multilayer thin film with PMA, the magnetization unit vector of a mixed-character domain 

wall is typically expressed as: 

 ( ) ( )sin sech ,cos sech , tanh ,
s

x x x
M w w w

η η⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

M
   (1) 

where sM  is the saturation magnetization of the thin film, w  is the domain wall width, and η   is the 

mixed-character parameter [37]. Although w  and η  may vary through the sample thickness, we 

consider them as thickness-averaged quantities. When the defocus is within the SDL, the normalized 
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“Lorentz” image intensity of a mixed-character wall oriented perpendicular to the tilt axis can be 

calculated analytically (see Supplementary Material for details): 

 ( ) ( ) ( ), , 1 sech cos tanh tan sech ,L x x xI x
w w w w

θ η η θΔ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞,Δ = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
  (2) 

where 0

02
B tL λ

φ
= , 0 0 0B Mμ= , t  is the thickness of magnetic material, λ  is the electron wavelength, 

Δ  is the defocus value, 15 2
0 2.07 10 Tmφ −= ×  is the flux quantum, and θ  is the sample tilt angle. The 

validity of equation (2) is restricted to defocus values small enough to ensure that the Fresnel number 

corresponding to our experimental setup is larger than unity, i.e. F=w2/λΔ>1 and, therefore, Δ<w2/λ~40 

μm. 

The calculated Lorentz intensities of Néel, Bloch and mixed domain walls using Eq. (2) are shown 

in Fig. 2(a-c). At 0θ = o , Néel walls do not generate contrast, while Bloch walls generate symmetric 

bright/dark contrast according to their chirality. Mixed domain walls display Lorentz contrast analogous 

to that of Bloch walls with a reduced intensity proportional to the ( )cos η factor in Eq. (2). As a 

magnetic domain wall is tilted along an axis perpendicular to its length, its contrast is modified by the 

projection of the domain wall itself and the projection of the out-of-plane magnetization with respect to 

the tilt axis, in addition to the change in the projected sample thickness. 

The observed broadening of the domain wall contrast with defocus shown in Supplemental Fig. 

3 [35] highlights the inadequacy of Eq. (2) when applied beyond the SDL: the role of Δ in Eq. (2) is limited 

to a linear change in contrast, and does not influence w and η. However, the exact calculation of the 

image intensity beyond the SDL requires the full Fresnel propagator describing how an electron 
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wavefront evolves in free space. While mathematically and numerically straightforward using standard 

image formation theory, the lack of an analytical solution prevents the use of Fresnel intensities as 

model functions for fitting the data. A comparison between the calculated Lorentz and Fresnel contrast 

profiles at varying defocus, shown in Fig. 2(d), reveals that the former fails to capture the natural 

spreading of the wavefront and it over-/underestimates the intensity values of minima/maxima, 

respectively. Consequently, fitting an experimental Fresnel image (Fig. 2(e)) with the Lorentz formula in 

Eq. (2) results in an apparent enlargement of the wall width as a function of defocus, and in significant 

uncertainties for the estimation of L , w , and η . This is illustrated in Fig. 2(f), where the Lorentz-fit 

Fresnel intensities corresponding to a w=10 nm, η=60° domain wall observed in the ±1 mm defocus 

range results in the apparent non-linear increase of w up to 20-25 nm (blue curve), and in fluctuations in 

η up to a few degrees (red curve). Our strategy to account for these issues is to: 1) fit each intensity 

profile at a given Δ and θ using Eq. (2) as a model function with w and η as free parameters, and 2) 

extrapolate the resulting trends of w and η with defocus using the correct Fresnel intensities, calculated 

as shown in the Supplementary Material and represented by the curves shown in Fig. 2(f). 

The determination of η  is achieved by fitting Eq. (2) for w  simultaneously with a global fit to η  

over a set of images acquired at a constant defocus for sample tilts from -30° to 30° in increments of 10° 

(Fig. 3). The effect of sample tilt on the projected spin structure is visualized in Fig. 3(a) where a mixed 

skyrmion (η = 62o ) is displayed at 0°, 30° and 45° tilt angles. Corresponding images of two magnetic 

domains with regions oriented orthogonal to the tilt axis are highlighted by the red box in Fig. 3(b) while 

a complete set of images acquired at each tilt can be seen in Supplemental Fig. 2 for 737 μm defocus 

[35].  All fitting for the determination of η  and w  is presented in Fig. 3(c). The η  values measured by 

fitting with Eq. (2) (red data points) as a function of defocus are displayed in Fig. 3(d) and specify an η  
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value around 60° that is consistent across tilt and defocus. Extrapolation of the measured values using 

Fresnel intensity simulations gives a value of 56 5η = ±o o , where the uncertainty is estimated from the 

spread of fit η  values for individually fit line scans. Similarly, the width parameter is determined as 

10 2w = ±  nm.  Further details regarding the influence in-plane fields have on the extraction of  η  are 

discussed in the Supplementary Materials [35]. 

An estimate for D and exA  is obtained by matching the experimental values of η  and w  to 

micromagnetics. Simulations were carried out using MuMax3 [38] with a cell size of 2x2x 1 nm3 on a 

1024x1024x13 nm3 structure with periodic boundary conditions. A Néel wall was initialized in the center 

running along the y-axis, and relaxed. We adopt the values 880sM = kA/m and 0.61uK = MJ/m3 from 

the VSM measurements. D  and exA  were varied to demonstrate their effect on the domain wall width 

and on the deviation angle (Fig. 4(a-c)). We find that the domain wall width varies only weakly with DMI, 

while the width changes significantly with variation in exA  (Fig. 4(b)). Matching the width with 

experimental results suggests an exchange stiffness between 23–30 pJ/m, similar to that of bulk Co and 

expected for Co/Pd multilayers with an ultrathin Pd spacer [39]. However, η  varies significantly with 

both exA  and D  (Fig. 4(a, c)). Using an exchange stiffness in agreement with the measured w  provides 

a value of D  in the range 1.0–1.1 mJ/m2.  This value is consistent with recent reports suggesting large 

values of D  in Pd based systems [34]. Our findings align with previous results of Co/Pt symmetric 

multilayers [40], with a possible origin of the DMI being inequivalent Pd/Co and Co/Pd 

interfaces [34,41,42]. The large dependency of η  with both D and exA  further confirms the need for a 

robust technique to make quantitative measurements of the physical parameters governing chiral 

domain structures.  This technique may be broadly applied to other systems with strong DMI and/or 

complex material profiles that pose challenges for the measurement of exchange stiffness. 
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We developed a quantitative Lorentz microscopy framework to measure the vital parameters of 

mixed Bloch/Néel domain walls in a model Co/Pd multilayer. Using the derived equation for Lorentz 

intensity from electron phase shifts, we measure the degree of Bloch/Néel mixed-character (

5η = 56 ±o o ) and the domain wall width ( 10 2w = ±  nm) through tilt- and defocus-dependent contrast 

analysis. Coupling the results to micromagnetic simulations confines the magnitude of the exchange 

stiffness to 23–30 pJ/m and the strength of the DMI to 1.0–1.1 mJ/m2, revealing the energy balance 

underpinning the complex spin structure. Direct determination of the relevant energy terms from a 

single experiment constitutes a substantial advance in understanding the physics that governs magnetic 

order in topological systems with a strong DMI, towards spintronic applications based on chiral 

magnetism. 
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Figure Captions: 

Figure 1: (a) Co/Pd magnetic hysteresis measured with VSM. The insets show schematics of the sample 
geometry and the interfacial DMI. (b-d) LTEM images of the sample as a function of applied fields. (e) 

180° domain walls appearing at low applied fields with a decreased density. (f) The same region as in (e) 

after tilting the sample 30° around the tilt axis shown. (g) Line scans from the magenta and green boxes 
in (e,f) demonstrate asymmetric LTEM contrast at tilt,  suggesting mixed-character domain walls. (h) Line 
scans from the regions highlighted in (d) reveal skyrmion-like structures with opposing Bloch 
components. The scale bar for all images is 1 μm. 

 

Figure 2: (a-c) Calculated intensity profile for Néel, Bloch and mixed domain walls as a function of tilt 
using Eq. (2). For (c), the mixed-character parameter, η , equals 60°. A schematic of a mixed domain wall 

is shown with the inset. (d) Fresnel and Lorentz intensities of a 10 nm mixed wall (η = 45o , 30θ = − o ) as 

a function of defocus. (e) Line scans of the Fresnel (brown), Lorentz (blue) and best-fit Lorentz profile to 
the Fresnel (green) intensities at 0.75mm defocus.  At this defocus, the 10 nm wall is Lorentz-fit as a 19 
nm wall, laterally shifted by 4.3 nm, and with a mixed-character parameter of 23°. (f) Curves 

representing the trends in the w (blue) and η (red) parameters as a function of defocus  determined 
using Eq. (2) as a model function to fit Fresnel intensities. The asymmetry between over- and under-
focus originates from interference effects with converging/diverging wavefronts, respectively. 

 

Figure 3: (a) Influence of tilt on the projected spin texture in the plane perpendicular to the beam 
direction. The tilt axis is indicated in black. (b) Characteristic images of domains with mixed-character 

walls acquired at 0° and 30° tilt for a defocus of 737 μm. The areas for analysis are highlighted in blue 
from the red box and identify regions oriented orthogonal to the tilt axis. (c) Lorentz-fits across tilt with 
constant defocus. (d) Best-fits for both η  (red) and w  (blue). Fresnel-extrapolation to zero defocus 

determines the values, 5η = 56 ±o o  and 10 2w = ±  nm. The inset defines the η  and w  parameters 

used for fitting. The applied field is 25 mT for all images and the scale bars in (b) are 500 nm. 

 

Figure 4: (a) Schematic domain wall profiles in the x-z plane as a function of DMI.  The color represents 
the y-component of the magnetization. (b) Domain wall width as a function of exchange stiffness for 
various values of DMI.  (c) Characteristic deviation angle as a function of exchange stiffness for various 
values of DMI.  The shaded regions demark the experimentally measured regions.  
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