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We consider a fractional quantum Hall bilayer system with an interface between quantum Hall
states of filling fractions (νtop, νbottom) = (1, 1) and (1/3, 2), motivated by a recent approach to
engineering artificial edges [1]. We show that random tunneling and strong repulsive interactions
within one of the layers will drive the system to a stable fixed point with two counterpropagating
charge modes which have attractive interactions. As a result, slowly decaying correlations on the
edge become predominantly superconducting. We discuss the resulting observable effects, and derive
general requirements for electron attraction in Abelian quantum Hall states. The broader interest
in fractional quantum Hall edge with quasi-long range superconducting order lies in the prospects of
hosting exotic anyonic boundary excitations, that may serve as a platform for topological quantum
computation.

Introduction. Combining superconductivity and
fractional quantum Hall edge states opens the possibil-
ity to engineer exotic topological phases of matter with
anyonic boundary excitations [2–8]. A possible route to
this is by using the proximity effect with a bulk super-
conductor and a quantum well in a hybrid structure [9–
11]. Another, less studied possibility is that of intrin-
sic superconductivity on the edge. Evidently, on a one-
dimensional edge there is no true long-range order and
correlation functions decay algebraically. One can nev-
ertheless refer to a superconducting phase as the one
where the slowest decaying correlation function is of su-
perconducting nature, i.e., a pairing correlator [12]. Such
power-law (or quasi-long-range) superconducting order
may still be relevant for topological quantum comput-
ing applications [13], c.f. [14] in the context of Majorana
bound states.

In a recent experimental work [1] it has been demon-
strated that in an engineered bilayer system it is pos-
sible to structure and control co- and counterpropagat-
ing edge modes in both the integer and fractional quan-
tum Hall regimes. The present work takes advantage of
this new paradigm and shows that one can design chiral
modes with bare repulsive interaction in the presence of
disorder to induce attractive interaction between the re-
sulting effective modes. This gives rise to a phase with
algebraically-decaying superconducting order.

To describe our results qualitatively, let us recall the pi-
oneering work [15] of Kane, Fisher, and Polchinski (KFP)
for ν = 2/3 edge hosting counterpropagating ν = 1/3 and
ν = 1 modes. Random tunneling and sufficiently strong
interaction between the two modes can drive the system
to a fixed point with decoupled neutral and charge modes.
The charge of the latter, 2e/3, is determined by the con-
stituent bare modes and charge conservation. The fixed
point is approached upon, for example, lowering the tem-
perature, and can be understood as a renormalization of

the interaction between the neutral and charge mode (the
interaction is an irrelevant perturbation and renormalizes
to zero). The novel aspect in our proposal is to consider
an additional ν = 1 (1e) charge mode interacting with the
KFP modes, see Fig. 1. As in the conventional KFP the-
ory, both charge modes decouple from the neutral mode
upon decreasing temperature. However, now there is a
set of KFP fixed points, parametrized by the interaction
between the 2e/3 and 1e charge modes. Our main find-
ing is that this fixed-point interaction can be attractive,
even when the bare interactions of the high-temperature
limit are repulsive. We further substantiate this claim by
studying the renormalization group flow in a fine-tuned
strongly-interacting model where the 2e/3 and the neu-
tral mode are already decoupled on the level of the bare
Hamiltonian. We then move on to study the new fixed
point. We find that the fixed point has superconducting
correlations of the charge modes: their pairing correla-
tion function decays slower than any charge density cor-
relation function. Finally, we outline how our model can
be realized in an engineered quantum Hall bilayer system
and how one can detect the attractive interactions at the
fixed point by using 3 experimental probes: multitermi-
nal shot noise, tunneling spectroscopy, and ground state
charge in a quantum dot geometry.

Model. We consider a system with 3 rele-
vant edge modes. We assume a right-moving ν =
1/3 mode and a pair of counterpropagating ν = 1
modes. In terms of a three-component chiral boson field
φ = ( φ1/3 φ−1 φ1 )T , our model is described by the
imaginary-time action

S =

∫
dτdx

1

4π
[∂xφKi∂τφ + ∂xφV∂xφ] (1)

+

∫
dτdx

[
ξ(x)eic·φ + ξ∗(x)e−ic·φ

]
,

where in the first line K = diag(3,−1, 1) and the V -
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Figure 1. Pictorial description of the main result. On the
left, we show the configuration of the bare edge modes. The
configuration of edge modes can be experimentally realized in
a bilayer structure, see Fig. 3a. There is strong Coulomb in-
teraction, U1/3,−1, as well as random tunneling, ξ(x), between
the modes φ1/3, φ−1. The third mode φ−1 is weakly coupled
with repulsive interaction to the mode φ1/3. As temperature
is lowered the random tunneling renormalizes the strongly-
coupled modes to a fixed point described by a neutral mode
φn and a charge mode φ−2/3, shown on the right. Remark-
ably, the interaction between the charge modes φ−2/3 and φ1

can be attractive while the neutral mode is decoupled due to
the disorder.

matrix is

V =

 3v1/3 U1/3,−1 U1/3,1

U1/3,−1 v−1 U−1,1
U1/3,1 U−1,1 v1

 . (2)

We assume that the mode φ1 is physically far from
the other two, so that U1/3,1, U−1,1 � U1/3,−1. Fi-
nally, the second line of Eq. (1) describes disordered tun-
neling of electrons between the counterpropagating 1/3
and 1 modes; here the tunneling vector is c = (3, 1, 0)
and ξ is a δ-correlated random coefficient, 〈ξ(x)ξ(x′)〉 =
Wδ(x − x′), with zero average. The random tunneling
term is non-linear in the boson fields and leads to non-
trivial renormalization of the V -matrix.

Let us first ignore the interactions U1/3,1, U−1,1 and
consider the problem of two modes φ1/3, φ−1. This is
exactly the model studied by KFP [15] in the context of
the edge of the ν = 2/3 quantum Hall state. The am-
plitude of random tunneling obeys the renormalization
group (RG) equation [16] dWdl = (3−2∆3,1,0)W . Here the

scaling dimension is ∆3,1,0 = (2 −
√

3c)/
√

1− c2 where
c = (2U1/3,−1/

√
3)/(v1/3 + v−1); the perturbation is rel-

evant, ∆3,1,0 < 3/2, when 0.34 . c . 0.98. Thus, for
sufficiently large positive (repulsive interaction) U1/3,−1,

the random tunneling operator ei[3φ1/3+φ−1] is a relevant
perturbation and its amplitude grows upon lowering the
temperature. This tunneling operator is the only rele-
vant one as long as we ignore tunneling to the mode φ1.
The latter mode can be ignored due to its larger separa-
tion [1], see also Discussion below. Next, we study how
the increasing W under RG transformation affects the
elements of the V -matrix.

Neutral mode basis and perturbative RG. Follow-
ing Ref. [15], it is convenient to work in the basis where

the random tunneling ei[3φ1/3+φ−1] is diagonal. This is
the basis of a right-moving neutral mode and a left-
moving charge mode,

φn =
1√
2

(
3φ1/3 + φ−1

)
, φ−2/3 =

√
3

2

(
φ1/3 + φ−1

)
.

(3)
The random tunneling, which conserves charge, only
couples to φn: in this “neutral mode basis” φ =
( φn φ−2/3 φ1 )T(n) and the tunneling vector becomes

c = (
√

2, 0, 0)(n). Also, K = diag(1,−1, 1)(n) and

V =

 vn Un,−2/3 Un1
Un,−2/3 v2/3 U−2/3,1
Un1 U−2/3,1 v1


(n)

, (4)

where the matrix elements are simple linear combinations
of the elements from Eq. (2). In particular, the interac-
tion between the charge modes φ−2/3, φ1 is U−2/3,1 =
1√
6
(3U−1,1 − U1/3,1). We see that the interaction is at-

tractive, U−2/3,1 < 0, when U1/3,1 > 3U−1,1. This can
happen when the mode φ1/3 is the nearest one to φ1, as
in Fig. 1. As we show below, the attractive interaction
between two charge modes makes the superconducting
pair correlations between them the slowest decaying cor-
relation function in the system, which we call supercon-
ducting state in 1D.

Evidently, in the bare non-renormalized V -matrix the
seemingly attractive interaction is just a result of a ba-
sis change from a system with purely repulsive interac-
tions. The off-diagonal elements Un,−2/3, Un1 that cou-
ple the neutral mode to the two charge modes ensure
that there are no superconducting correlations. How-
ever, we will show next that under renormalization, the
elements Un,−2/3, Un1 will flow to zero due to disor-
der in the neutral mode, while U−2/3,1 remains approxi-
mately constant. In the original basis this corresponds to
U1/3,1, U−1,1 flowing to negative values, i.e., attraction,
see Fig. 2.

The weak-disorder RG flow of V was studied by Moore
& Wen [17], who found that a relevant disorder oper-

ator ei
√
2φn drives the V -matrix towards a fixed point

which is diagonal in the neutral sector. Therefore,
Un,−2/3 and Un1 are both irrelevant and flow to weak

coupling [18]. Furthermore, the disorder operator ei
√
2φn

commutes with ∂xφ−2/3∂xφ1, so we expect U−2/3,1 to be
marginal, with weak renormalization stemming from its
non-commutation with Un1∂xφn∂xφ1. We confirm this
intuition by finding the flow equations [19] in the limit
of weak disorder and weak couplings in the KFP fine-
tuned (yet generic in terms of the resulting physics) point
Un,−2/3 = 0 [corresponding to U1/3,−1 = 3(v1/3+v−1)/4].
Numerical solution of the RG equations produces the flow
diagram shown in Fig. 2, presented in terms of the orig-
inal couplings U−1,1 , U1/3,1.
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Figure 2. Flow of the interaction parameters U−1,1 , U1/3,1

that couple the mode φ1 to the other modes. The bare in-
teractions in the blue region, 3U−1,1 − U1/3,1 < 0, flow to
a superconducting phase. There is a line of stable fixed
points U−1,1 = U1/3,1 [Un1 = 0] (black). Near this line,
the tree-level RG is accurate and flow is along lines of con-
stant 3U−1,1 − U1/3,1 (dark blue line). Far from the line
U−1,1 = U1/3,1 one needs to account for terms beyond tree-
level RG. The operator 3U−1,1−U1/3,1 is marginally irrelevant
and no longer remains constant during the flow. The flow dia-
gram is calculated at the fine-tuned point where Un,−2/3 = 0.
We took v1 = v−1 = 2v1/3.

Strong-disorder fixed point. Perturbative treat-
ment of random tunneling is only valid at high energies.
To describe the non-perturbative low energy regime we
follow KFP and postulate a strong-disorder fixed point
V -matrix,

Vf.p. =

 vn 0 0
0 v2/3 U−2/3,1
0 U−2/3,1 v1


(n)

. (5)

At the fixed point we have a decoupled right-moving
neutral mode φn, a right-moving ν = 1 charge mode
φ1, and a left-moving charge mode φ−2/3. The latter
two are coupled via an interaction that is attractive,
U−2/3,1 < 0, as long as the bare interactions satisfy
3U−1,1 < U1/3,1. The set of fixed point V -matrices (5)
can also be obtained even without random tunneling by
fine-tuning the bare interactions in Eq. (2) in such a way
that the neutral mode decouples. Such a fine-tuning
yields U−2/3,1 =

√
2/3U1/3,1 > 0, assuming repulsive

bare interactions. Thus, renormalization by random tun-
neling is essential for obtaining an attraction out of re-
pulsion.

The charge sector action can be diagonalized by a hy-
perbolic rotation(

φ1
φ−2

3

)
=

(
coshχ sinhχ
sinhχ coshχ

)(
φ+
φ−

)
, tanh 2χ=

−2U−2
3 ,1

v 2
3

+ v1
.

(6)
Using Eq. (6), one finds that the scaling dimension ∆
of a generic vertex operator O = exp i(cnφn + c1φ1 +

c2/3φ−2/3) is

∆c =
1

4
(c1 + c2/3)2e2χ +

1

4
(c1 − c2/3)2e−2χ +

1

2
c2n . (7)

The attractive U−2/3,1 in Eq. (5) makes the pairing corre-
lation function the slowest decaying one. The supercon-
ducting pairing correlation function in the original ba-
sis is OSC ∼ ei(φ1−φ−1) [this operator creates two coun-
terpropagating electrons in the ν = 1 modes]. Its di-
mension is calculated by first expressing φ−1 in terms

of φn and φ−2/3: ei(φ1−φ−1) = e
i(φ1− 1√

2
[
√
3φ−2/3−φn]),

and then using Eq. (7). We find the scaling dimen-

sion [20] ∆SC = 1
4 (1 +

√
3
2 )2e−2χ + 1

4 (1−
√

3
2 )2e2χ + 1

4 .

For χ & 0.26 we have ∆SC < 1, so the pairing cor-
relator decays slower than the neutral mode correlator

ei[3φ1/3+φ−1] = ei
√
2φn . Likewise, the diagonal density

operator Oc,±1(x) ∼ ∂xφ±1 has ∆ = 1 irrespective of
U−2/3,1 and so the density perturbation decays faster
than pairing. Finally, we consider the off-diagonal den-
sity operator [21] OCDW ∼ ei(φ1+φ−1). We find ∆CDW =
1
4 (1 +

√
3
2 )2e2χ + 1

4 (1 −
√

3
2 )2e−2χ + 1

4 . Since χ > 0 for

U−2/3,1 < 0 [Eq. (6)], we always have ∆SC < ∆CDW .
Thus, superconducting pair correlations are the slowest
decaying ones in the strong coupling fixed point. Next,
we discuss the measurable effects of this attraction.

Consequences of attraction. The relatively long-
ranged pairing correlations are a direct consequence of
the attractive interaction U−2/3,1 < 0 in Eq. (5). Thus,
one way to probe our proposed fixed point is to measure
U−2/3,1 or its sign. Since the fixed point action is that of
a non-chiral spinless Luttinger liquid, one is faced with
the known task of measurement of the Luttinger liquid
parameter. Next, we outline three possible ways to do
this. We focus on the experimentally relevant bilayer
quantum Hall system, see Fig. 3.
Signature of attraction in shot noise. It is well-known

that the interaction parameter in a non-chiral Luttinger
liquid can be measured with a.c. shot noise [22–24].
The attractive interactions in our setup can be mea-
sured in a similar experiment, see Fig. 3a. Employing
the theory of inhomogeneous Luttinger liquid [25], we
solve [19] the problem of a bare incoming mode φ−1 scat-
tered off an interacting region at the superconducting
fixed point. In particular, the charge reflected into the
mode φ1 (drain D1 in the bottom layer) is fractional with
a non-universal magnitude. Its sign however is given
directly by U−2/3,1. Thus, a smoking gun signature of
the emergence of the attraction would be negative current
measured at D1 (“Andreev reflection” at the edge) [26].
The reflected charge can be measured in a time-domain
experiment and requires access to frequencies ω & v/L
where v = max(v2/3, v1) and L is the length of the scat-
tering region.
Signature of attraction in tunneling conductance.

One can also measure U−2/3,1 from tunneling conduc-
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tance [27–32] in the interacting region, for example by
using a point-contact to an auxiliary ν = 1 edge. For de-
scribing the tunneling Hamiltonian, consider the vertex
operator ei(n1φ1−n−1φ−1+3n1/3φ1/3) that creates an exci-
tation of total charge n1 + n−1 + n1/3 on the edge; here
n1, n−1, n1/3 ∈ Z. The contribution to the tunneling cur-
rent from the above operator exhibits a power-law bias
voltage dependence [27], [33] I ∝ V 2α−1 where the ex-
ponent α = ∆n1,n−1,n1/3

+ 1
2n is determined by the scal-

ing dimension ∆n1,n−1,n1/3
[obtained from Eq. (7) after

transforming the vertex operator into the neutral mode
basis by using Eq. (3)] and the number of electrons n
removed from the auxiliary edge. The total tunneling
current is a sum of elementary tunneling processes, but
will be dominated at small voltages by those with a low
value of α. For moderate interaction strengths χ [Eq. (6)]
the dominant contributions are the 1-electron tunneling
operators eiφ1 and e−iφ−1 , as well as the 2-electron tun-
neling operator ei(φ1−φ−1). Their respective tunneling
amplitudes t1, t−1, and t1t−1, are in principle control-
lable by gating, so that different 1-electron contributions
can be turned on and off. The signature of attractive
interactions (χ > 0) is that ∆1,−1,0 < ∆1,0,0 + ∆0,−1,0,
meaning that when tunneling to both ν = 1 edges is
present, the current is less suppressed by a small bias
than one would expect from uncorrelated tunnelings to
each edge separately.

Signature of attraction in a mesoscopic droplet. Fi-
nally, one can perform a fully thermodynamic measure-
ment in a Coulomb blockaded quantum Hall droplet, see
Fig. 3b. This is akin to ideas of “attraction from repul-
sion” that have been implemented in other systems [34],
compare also proposals to probe neutral modes in the
context of quantum Hall edges [35]. The signature of at-
traction in the Coulomb blockaded droplet is 2e-periodic
charge transitions as a gate charge is varied [19]. This sig-
nature can be measured in a thermodynamic capacitive
measurement of the charge or in a transport measure-
ment of the Coulomb peak spacings.

Discussion. Our proposal relies on the tunneling be-
tween the modes φ1/3 and φ−1 being the most RG rel-

evant perturbation. Typically, the tunneling ei(φ1+φ−1)

between the ν = 1 modes is also relevant and leads to
a trivial localization of the ν = 1 modes. This effect
should however be present only at very low temperatures
since we expect the bare amplitude of the ν = 1 tunnel-
ing to be very weak due to the large separation of the
ν = 1 modes. The ν = 1 tunneling can also be entirely
avoided by considering a setup with spin-polarized Lan-
dau levels where φ1 and φ−1 have opposite spins and the
tunneling between them is forbidden by spin conserva-
tion. This can be achieved with an interface between
(νtop, νbottom) = (1/3, 2) and (νtop, νbottom) = (1, 1), as-
suming the ν = 2 state consists of opposite-polarized
ν = 1 states. This state also satisfies the requirement
that νbottom ≥ νtop holds on both sides [1].

GND

Figure 3. Experimental probes to measure attractive in-
teractions in (a) shot noise, and (b) Coulomb blockaded
Hall droplet. This configuration can be experimentally re-
alized in a bilayer structure at an interface of bulk fillings
(νtop, νbottom) = (1, 1) and (1/3, 2). We have drawn the bare
modes at the interface in the same order as in Fig. 1 left.
These modes are renormalized to an effective neutral and
charge modes (e and 2e/3), see Fig. 1 right. The dashed
edge mode lives on the bottom layer and solid ones on the
top. We have not drawn the ν = 1 mode of the bottom layer
that encircles the entire system since it is not relevant to the
physics at the interface.

In our model we assumed that U1/3,−1 is the largest in-
teraction while the other two were treated perturbatively,
which ensures that ei[3φ1/3+φ−1] is relevant and KFP fixed
point is reached. Thus, we rely on the double-inequality
U1/3,−1 > U1/3,1 > 3U−1,1 to approach the fixed point
with attractive interactions. We find that Coulomb in-
teraction screened by a nearby gate electrode [36],[19]
allows both inequalities to be satisfied.

One may ask how essential the bilayer construction is
to manifest our theory. For example, edge reconstruction
in a ν = 1/n Laughlin state can give rise to a ν = 1/m
stripe in the bulk-vacuum interface. Disordered tunnel-
ing between the two inner modes gives rise to counter-
propagating neutral and a charge modes. The propaga-
tion directions of these modes are determined by compar-
ing the two filling fractions. If n < m, the charge mode
is co-propagating with the outermost ν = 1/m mode.
Therefore, there are no emerging superconducting corre-
lations even if there is attraction between the two charge
modes. (Interactions between co-propagating modes do
not affect the scaling dimensions of the operators in-
volved, since the V -matrix can be diagonalized with an
orthogonal transformation [27].) In the more interest-
ing scenario n > m, the charge modes are counterpropa-
gating and superconducting correlations may in principle
emerge. In this case the the interaction is attractive when
U 1

n ,
1
m
> n

mU− 1
m , 1

m
. However, for an interaction falling

monotonically with distance, we expect U 1
n ,

1
m
< U− 1

m , 1
m

because the outermost mode +1/m is closer to −1/m
rather than the bulk mode 1/n. This is why we do
not expect to find superconducting correlations in such
a simple model of edge reconstruction. This problem is
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circumvented in the bilayer setup, see Fig. 1. Here the
two-dimensional electron gas (2DEG) is replaced by a bi-
layer of 2DEGs whose individual filling fractions can be
tuned. The resulting boundary consists of chiral mode
structure which can be controlled on-demand by tuning
back gate voltages and the magnetic field. Finally, we
note that our proposal also works for an interface between
(νtop, νbottom) = (2/3, 1) and (νtop, νbottom) = (0, 2), as-
suming that the ν = 2/3 edge consists of counterpropa-
gating ν = 1 and ν = 1/3 modes [37, 38].
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