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We develop a low-energy effective field theory of a two-dimensional bosonic superfluid on the lowest Landau

level at zero temperature and identify a Berry term that governs the dynamics of coarse-grained superfluid

degrees of freedom. For an infinite vortex crystal we compute how the Berry term affects the low-energy

spectrum of soft collective Tkachenko oscillations and non-dissipative Hall responses of the particle number

current and stress tensor. This term gives rise to a quadratic in momentum term in the Hall conductivity, but

does not generate a non-dissipative Hall viscosity.

Introduction.—It is known since 1930 [1] that the quantum-

mechanical energy spectrum of a nonrelativistic particle of

mass m and unit charge in a constant magnetic field B form

an infinite equidistant tower of highly degenerate Landau lev-

els separated from each other by the cyclotron energy gap

ωc = B/m [2]. For electrons this observation, together with

the Pauli exclusion principle, allows one to understand salient

features of integer quantum Hall fluids. Theoretically, in the

limit of an infinite cyclotron gap, one is left only with states

occupying the lowest Landau level (LLL). The LLL Hilbert

space is a natural starting point for formulating theories of

strongly correlated fermionic fractional quantum Hall liquids.

On the other hand, bosons respond to an external magnetic

field by forming quantum vortices, whose density is fixed by

the magnetic field, nv = B/2π. At zero temperature, the

phase diagram of a homogeneous many-boson system with

an isotropic short-range repulsive interaction is determined by

the ratio of the density of bosons n to the density of vortices

nv, known as the filling fraction ν = n/nv. For ν & νcr ∼ 8
[3, 4] bosons form a gapless superfluid vortex crystal, while

for ν . νcr the system becomes an incompressible bosonic

fractional quantum Hall state, whose nature depends on the

precise filling fraction [5, 6]. Within the crystalline phase,

one distinguishes the regime of slow [7–10] and fast [4, 11–

16] rotation, with nvξ
2 ≪ 1 or nvξ

2 ≫ 1 correspondingly,

where ξ is the superfluid coherence length [17, 18]. In the

latter regime, an arbitrary number of bosons is accommodated

by a single orbital, and the LLL approximation can be applied

in the regime ν > 1, in contrast to the fermionic case. In

fact, it is known since the seminal work of Abrikosov [19]

that the physics of the vortex lattice in superconductors can be

understood analytically within the LLL approximation in the

bosonic Ginzburg-Landau theory.

In this Letter, we formulate and analyze a low-energy ef-

fective field theory of a two-dimensional bosonic superfluid in

the LLL regime. We discover that the existence of a smooth

LLL limit implies that in this regime the dynamics of super-

fluid degrees of freedom is governed by what we will term

“the Berry Lagrangian”

LB = ∓1

2
nεij∂ivj , (1)

where n and vi denote the smooth superfluid density and ve-

locity, coarse-grained over regions containing a large number

of quantized vortices. As characteristic to a Berry term, its

contribution to the action depends on the trajectories of the

fluid particles, but not on the time it takes for these trajecto-

ries to be traversed. The sign of the Berry term (1) is fixed

by the direction of the external magnetic field B. The term

(1) is odd under separate time-reversal T (t → −t) and two-

dimensional parity P (x↔ y) transformations.

To the best of our knowledge, the term (1) did not appear

in previous studies of superfluids in the LLL regime. In this

Letter, we focus our attention on the implications of the Berry

term (1) for the low-energy physics of an infinite unpinned

vortex crystal at zero temperature. We determine how this

term modifies the dispersion of the collective Tkachenko wave

(see Eq. (15)) and demonstrate that it gives rise to a quadratic

in momentum term in the Hall conductivity (see Eq. (19)). In

addition, we find that this term generates a time-reversal odd

contribution to the stress tensor (17), but does not produce a

non-dissipative Hall viscosity.

Our derivation of the Berry term is quite general and sug-

gests that such a term should also appear away from the LLL

limit, which is deferred to a future work. On the other hand,

our conclusions are not directly applicable in the incompress-

ible strongly-correlated non-superfluid regime.

Effective field theory of LLL superfluid.—Our starting point

is the microscopic theory of an interacting nonrelativistic

spinless bosonic field ψ coupled to a U(1) gauge field Aµ

and, for later convenience, an external spatial metric gij . The

Lagrangian is given by

L =
i

2
ψ†←→D tψ −

gij

2m
Diψ

†Djψ +
gB

4m
ψ†ψ + Lint(n), (2)

whereDµψ = (∂µ− iAµ)ψ, g denotes the gyromagnetic fac-

tor of elementary bosons and B = εij∂iAj is the magnetic

field [20]. We assume that the interaction Lagrangian depends

only on the density n = ψ†ψ.

First, we will work in flat space and introduce the complex

spatial coordinates z = x + iy and z̄ = x − iy. In these

coordinates, the free part of the microscopic Lagrangian is

L0 =
i

2
ψ†←→D tψ −

2

m
Dzψ

†Dz̄ψ + (g− 2)
B

4m
ψ†ψ. (3)
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In the symmetric gauge a constant background magnetic field

B0 results from Az = −iB0z̄/4 and Az̄ = iB0z/4. We no-

tice that g = 2 is special since in this case the last term drops

out and the energy of the LLL vanishes. In fact in this case

the LLL is degenerate even in inhomogeneous magnetic field

on arbitrary curved surface [21, 22]. We can project the La-

grangian (3) to the LLL by taking the limit m → 0, while

keeping the magnetic fieldB fixed resulting in a diverging cy-

clotron frequency ωc. Using the Hubbard-Stratonovich trans-

formation, we rewrite now Eq. (3) as

L0 =
i

2
ψ†←→Dtψ−χ†Dz̄ψ−χDzψ

†+
m

2
χ†χ+(g−2) B

4m
ψ†ψ.

(4)

In the limit m → 0, the equation of motion for the Lagrange

multiplier χ† produces the holomorphic condition Dz̄ψ =
0, which is solved by a LLL wave function ψLLL(z, z̄) =

f(z)e−|z|2/(4l2
B
), where we introduced the magnetic length

lB =
√

1/B0. Notably in this construction the LLL limit

is smooth only for g = 2. While for Dirac electrons g = 2
is the physical value of the gyromagnetic factor, for bosons

g = 2 is not a natural choice. For example, neutral spinless

bosons rotating with angular frequency Ω = B/2m couple

to the U(1) source minimally and thus in that case g = 0.

Fortunately, from Eq. (2) one readily observes that given the

Lagrangian for g = 2 fixes the theory for any value of g

Lg(. . . , A0) = Lg=2(. . . , A0 +
g− 2

4m
B). (5)

So our strategy in the following is to construct the low-energy

effective theory first for g = 2, making use of the smoothness

of the LLL, and subsequently transform the parameter g to its

physical value using Eq. (5).

In this Letter we use boson-vortex duality [23, 24] to derive

the low-energy effective theory of a superfluid on LLL. In this

formulation superfluid degrees of freedom are encoded in a

2+ 1-dimensional gauge field aµ, while quantum vortices are

charged particles with respect to this field. In this language, a

vortex crystal is a two-dimensional Wigner solid of dual point

charges embedded in a static neutralizing background and a

homogenous dual magnetic field fixed by the superfluid den-

sity [25]. The superfluid part of the LLL effective theory can

be derived from the microscopic model (4) as follows: First,

we parametrize the bosonic field ψ =
√
neiθ , where θ is the

phase bosonic field. Averaging now over regions with large

number of vortices, such that their total charge is fully com-

pensated by the charge density of a static neutralizing back-

ground, the dual gauge Lagrangian is defined as the Legendre

transformation L̃0 = L0 − πµ∂µθ, where πµ = ∂L0/∂∂µθ.

In the the LLL limit m = 0 and g = 2 one finds [26]

L̃LLL,g=2
0 = εµνρAµ∂νaρ +

1

2b
ei∂ib, (6)

where the dual magnetic and electric fields b = εij∂iaj and

ei = ∂tai − ∂iat were defined in terms of the U(1) particle

number current jµ = δS/δAµ = εµνρ∂νaρ. It is straightfor-

ward to check that the change of the sign of the background

magnetic fieldB0 → −B0 modifies the Lagrangian (4) result-

ing in the anti-holomorphic LLL condition Dzψ = 0 which

in turn reverses the sign of the second term in the dual La-

grangian (6). By introducing now the superfluid velocity

vi = ji/n = −εijej/b (7)

and performing integration by parts, we can cast this term into

the form (1). In the gauge theory language the Berry term is

linear in the electric field and thus does not affect the Hamil-

tonian. Due to this term, however, the Poisson brackets in

the LLL regime should differ from the canonical structure of

the Hamiltonian theory in the Tkachenko regime derived in

Refs. [27, 28].

It straightforward to generalize the above duality transfor-

mation to the case with m 6= 0 and g 6= 2. We start from Eq.

(4) and follow the steps above

L̃0 =
me2

2b
+ L̃LLL,g=2

0 +
(g − 2)

4m
Bb. (8)

Hence the coefficient of the Berry term does not depend on the

values of g andm. In the LLL limit the electric termme2/(2b)
drops out and the dynamics of the superfluid is governed only

by the Berry term.

Alternatively, one can derive the effective theory (8) from

the general coordinate (diffeomorphism) invariance which is

inherited from the microscopic model (2). In the dual the-

ory the coupling of bosons to the U(1) source is encoded in

the mixed Chern-Simons (CS) action SCS =
∫

Ada. It was

shown however in Ref. [29] that for m 6= 0 and g 6= 0 the

gauge field Aµ does not transform as a one-form under time-

dependent spatial diffeomorphisms and thus on its own the

mixed CS action is not general coordinate invariant. To cir-

cumvent this problem in the theory with g = 2 we introduce

the improved gauge potential Ãµ that transforms as a one-

form [29]

A0 → Ã0 = A0 −
m

2
gijv

ivj − 1

2
εij∂ivj ,

Ai → Ãi = Ai +mvi,
(9)

where the velocity field was defined in Eq. (7). The improved

mixed CS term is diffeo-invariant and reads

LC̃S,g=2 = Ãda = Ada+
mgijeiej

2b
− 1

2
b∇i

(

ei

b

)

, (10)

where ∇i is the Levi-Civita covariant derivative. To get the

diffeo-invariant mixed CS term in the theory with g 6= 2 we

use Eq. (5). In flat space the end result reproduces Eq. (8) up

to a surface term.

How does the interaction term Lint affect the dual theory?

As long as it depends only on the density, it is general coordi-

nate invariant on its own and its role in the duality transforma-

tion is completely passive. The Lagrangian of the dual theory

with this type of interactions is L̃ = L̃0 + Lint(b).
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Angular momentum on LLL.—Taking the derivative of the

dual effective action with respect to Ai one finds the particle

number current

ji =
δS

δAi
= −εijej +

g− 2

4m
εij∂jb = nvi +

g− 2

4m
εij∂jn.

(11)

In a Galilean-invariant system the current ji fixes uniquely the

momentum density [30]

T 0i = mji − g

4
εij∂jn. (12)

Substituting now Eq. (11) into this equation and taking the

limit m → 0, the angular momentum in the LLL superfluid

is Jz =
∫

d2xǫijx
iT 0j = −N , where N is the total num-

ber of elementary bosons. Thus we recover the known result

that the angular momentum of the LLL superfluid is given in

absolute value by the number of particles [26]. In the studies

of rotating neutral superfluids in the LLL approximation, it is

interpreted as a universal deviation of the angular momentum

in the lab frame from the solid-body prediction (see Ref. [31]

and references therein).

Infinite vortex lattice in the LLL regime.—Now we are

ready to include the physics of vortices. In an infinite two-

dimensional system in a magnetic field quantum vortices in a

superfluid form a triangular Abrikosov lattice. The effective

Lagrangian of the vortex degrees of freedom used here is in-

spired by Ref. [25], where the dual effective theory of a vortex

crystal (at g = 0) was constructed away from the LLL limit.

The effective theory of an infinite vortex crystal analyzed in

this paper is [32]

Lvc =
me2

2b
+

1

2b
ei∂ib+ ǫ

µνρAµ∂νaρ+
(g − 2)

4m
Bb− ε(b)

− B0

2
bǫiju

iDtu
j +B0eiu

i − Eel(uij), (13)

where ε(b) is the internal energy density which is fixed by

the form of the interaction Lagrangian Lint, ui denotes the

coarse-grained displacement of vortices from their equilib-

rium positions and uij = ∂(iuj) − ∂kui∂kuj/2 is the strain

tensor. The first line describes the superfluid sector dis-

cussed above. The only difference is that here we intro-

duced a modified U(1) source. The temporal component

A0 = A0 +
g−2
4m B0 measures the chemical potential from the

LLL, while the spatial part Ai is set to vanish in the ground

state. The second line encodes the physics of vortices: the

Magnus term governs the dynamics, the second term mea-

sures the dipole energy density and the last term defines the

elastic properties of the triangular lattice which to lowest or-

der in derivatives coincide with the elastic energy density of

an isotropic medium and thus depend only on the compres-

sional and shear bulk moduli C1 and C2 (see Refs. [17, 25]

for details). Expanding now around ei = 0 and the minimum

b = n0 of ε(b), to quadratic order the Lagrangian in the ab-

sence of the U(1) source is

L(2)vc = −B0n0

2
ǫiju

iu̇j +B0eiu
i − E(2)el (∂u)− ε′′

2
δb2

+
me2

2n0
+

1

2n0
ei∂iδb, (14)

where δb = b − n0 and the speed of sound cs is fixed by

ε′′ = mc2s/n0. In the power-counting defined in Ref. [25]

the first line defines the leading order (LO) Lagrangian which

gives rise to a transverse Tkachenko wave with a gapless

quadratic dispersion relation [17, 27, 33]. The electric and

the Berry terms are the next-to-leading order (NLO) correc-

tions within this power-counting scheme. Here we investigate

the LLL regime m → 0, where the electric term drops out.

In addition, the speed of sound is scaled to infinity such that

ε′′ = mc2s/n0 remains constant. While one can write a num-

ber of additional NLO terms that preserve P and T separately,

we are not aware of other NLO P - and T -odd terms allowed

in this system except for the phonon Hall viscosity introduced

in Ref. [34]. The fate of the phonon Hall viscosity term in the

LLL regime is unclear now and it is not discussed here.

By solving the equations of motion for a plane wave prop-

agating along say x-axis we find the elliptically-polarized

gapless Tkachenko mode with the dispersion (k = −i∂x,

ω = i∂t)

ω2 =
2C2ε

′′

B2
0

k4 − 2C2ε
′′

B3
0

k6 +O
(

k8
)

. (15)

Due to the NLO Berry term, the dispersion starts to devi-

ate from the quadratic form at momenta of order of the in-

verse of the magnetic length, k ∼ l−1
B . This correction is ab-

sent in the results of Baym (Eq. (14) in Ref. [17]) and Sonin

(Eq. (3.128) in Ref. [18]), which give a strictly quadratic dis-

persion in the LLL limit defined above. Note that the La-

grangian (13) contains only the minimum number of terms

required by Galilean invariance and the regularity of the LLL

limit; additional terms may change the coefficient of the k6

term in Eq. (15). In [26] we compare the equations of mo-

tion derived from the Lagrangian (14) with the hydrodynamic

equations found in Ref. [17].

By using the Lagrange coordinatesXa(t,x) frozen into the

vortex lattice instead of displacements ui(t,x), the effective

theory of the vortex crystal can be cast into the general co-

ordinate invariant form [25]. In this formulation the effective

action of the vortex crystal is Svc =
∫

dtd2x
√
gLvc with

Lvc =
mgijeiej

2b
+

1

2b
gij∇ibej+ǫ

µνρAµ∂νaρ+
(g− 2)

4m
Bb

− ε(b)− πnvε
µνρǫabaµ∂νX

a∂ρX
b − Eel(U

ab), (16)

where Uab = gij∂iX
a∂jX

b with a = 1, 2. Remarkably, the

P - and T -odd Magnus and dipole terms combine into a single

topological term. Here we focus on the P - and T -odd Berry

term which depends on the metric and thus modifies the stress
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tensor T ij
B = 2δSB/(

√
gδgij)

T ij
B =

1

2
gij∇k(log b)ek −∇(i(log b)ej) +

1

2
gijgkl∇kel

= −1

2

(

gikεjl + gjkεil
)

vk∇ln+
n

2
gijεkl∇kvl, (17)

where the second line was obtained by using the duality dic-

tionary and the two-dimensional vector identity
(

gikεjl +

gjkεil
)

a[kbl] = gijεklakbl. Since in the LLL limit at g = 2
the momentum density (12) reduces to T 0i = −εij∂jn/2, it

is straightforward to check that the Berry stress tensor (17)

transforms properly under Galilean boosts [26]. In the case

g 6= 2, the last term on the first line of Eq. (16) gives a modifi-

cation to the pressure ∆T ij
LLL = −(g− 2)Bbgij/(4m) which

is consistent with general relations derived in Appendix B of

Ref. [30].

Hall responses.—Being odd under P and T , the Berry term

affects the non-dissipative Hall response of the vortex crystal.

Here we discuss linear Hall response of the particle current

and stress tensor in the LLL regime. We mostly focus on the

case g = 2, where all response functions are regular. The case

of g 6= 2 is discussed in detail in [26].

Given our definition of the U(1) electric field Ei = ∂tAi−
∂iAt, the conductivity tensor is defined as

σij(ω,k) = − δji

δEj
=

δji

iωδAj
=

δji

ikjδAt
. (18)

Substituting now linearized equations of motion derived from

the Lagrangian (13) into the definition of the current (11), we

find with the help of Eq. (18) in the LLL m → 0 limit the

Hall conductivity σH = (σxy − σyx)/2

σH(ω, k) =
n0

B0
− n0

2B2
0

k2 +O(k4). (19)

The quadratic term in momentum originates from the NLO

Berry Lagrangian.

The geometric response of the stress tensor to the metric

allows one to define the elasticity and viscosity tensors λijkl

and ηijkl

δT ij = −λijklδgkl − ηijklδġkl. (20)

The Hall viscosity tensor ηijklH [35, 36] is defined as the odd

part of the viscosity tensor under ij ↔ kl

ηijklH =
1

2
(ηijkl − ηklij). (21)

This non-dissipative response is ubiquitous in two-

dimensional systems which break time-reversal symmetry

[35–38]. In a rotation-invariant system the Hall viscosity has

only one independent component [35, 36] which we denote

as ηH . To compute this response function we first derive

from the Lagrangian (16) the equations of motion in the LLL

regime m = 0 and at g = 2

− 1

2
gij∇i∇j log b+ πnvε

ijǫab∂iX
a∂jX

b −B = 0, (22)

1

2
√
g
εjk∂t

(√
ggkl∇l log b

)

− 1

2
∂j
gkl∇kel

b

− ε′′(b)∂jb+ 2πnvǫabẊ
a∂jX

b − Ej = 0,

(23)

πnvε
µνρǫab∂µaν∂ρX

b − 1
√
g
∂j
(√
g
∂Eel

∂Uab
gij∂jX

b
)

= 0

(24)

and linearize them around the flat space solution b = n0,

ei = 0 and Xa = δai x
i. To extract the Hall viscosity it is

sufficient to restrict the perturbation δgij(t) to be traceless

and homogenous in space. An explicit calculation shows that

such a perturbation δgij(t) does not affect linearized equa-

tions of motion. This result implies that the variation of the

stress tensor, derived from the Lagrangian (16), with respect

to the time derivative of the homogeneous traceless metric is

zero and thus the Hall viscosity must vanish. This conclusion

does not change if one generalizes the calculation to the case

with g 6= 2.

Galilean invariance gives rise to relations between the con-

ductivities and viscoelastic response functions [39, 40]. In the

LLL limit m → 0 and at g = 2, where all conductivities

are regular, the Hall viscosity is completely fixed by the Hall

conductivity [30]

ηH =
1

2
B2

0∂
2
kσH(k) +

1

2
B0σH(k = 0). (25)

After substituting into this relation the result (19), we find

ηH = 0. For g 6= 2 the LLL limit is not smooth which

leads to singular terms in the conductivity tensor. As a result,

the simple relation (25) is not applicable anymore and must

be replaced by a more complicated relation that involves the

singular part of the longitudinal conductivity, for a detailed

discussion we refer to [26]. Nevertheless, the Hall viscosity

derived from that relation is still zero which agrees with the

result of the geometric calculation.

In summary, the P - and T -odd NLO Berry term fixes in

the LLL regime the quadratic in momentum term in the Hall

conductivity, but does not give rise to the dissipationless Hall

viscosity.

Conclusions.—In a two-dimensional bosonic superfluid the

existence of a smooth LLL limit allowed us to identify a Berry

term in the low-energy effective theory. Since the coefficient

of this Berry term does not depend on the mass of the elemen-

tary boson it appears that it survives in a bosonic superfluid in

magnetic field even away from the LLL limit. As a result, in

the effective theory developed here the crossover of a vortex

crystal from the LLL to the Tkachenko regime is controlled by

the mass of the boson m. While in the LLL limit the dynam-

ics of the coarse-grained superfluid is governed by the Berry

term ei∂ib/2b, in the Tkachenko limit m → ∞ the electric

term me2/2b dominates.

The Berry term can be interpreted as the coupling of the dy-

namical electric field ei to the dipole density di = ∂i log b/2.

From Eq. (12), in the LLL limit m → 0 and at g = 2 the

dipole density is di = εijT
0j/b, i.e., proportional and per-

pendicular to the momentum density T 0i.
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In the future it would be interesting to determine the fate

of the phonon Hall viscosity term [34] in the LLL regime and

find if the theory developed here is related to hydrodynamics

of a vortex fluid in an incompressible liquid [41]. It would be

also useful to understand the role of the Berry term in vortex

crystals in two-dimensional fermionic chiral p + ip superflu-

ids, where Cooper pairs have the gyromagnetic factor g = 2
and the geometric spin s = 1 [38, 42, 43].
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