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We propose a scheme for continuously measuring the evolving quantum phase of a collective
spin composed of N pseudospins. Quantum non-demolition measurements of a lossy cavity mode
interacting with an atomic ensemble are used to directly probe the phase of the collective atomic
spin without converting it into a population difference. Unlike traditional Ramsey measurement
sequences, our scheme allows for real-time tracking of time-varying signals. As a bonus, spin-
squeezed states develop naturally, providing real-time phase estimation significantly more precise
than the standard quantum limit of ∆φSQL = 1/

√
N radians.

Quantum systems have become robust platforms for
metrology and tests of fundamental physics. Many appli-
cations rely on the dynamics of pseudospin-1/2 systems
with two long-lived quantum states, |↑〉 and |↓〉. After
preparing an equal superposition of these two states, a
physical interaction is studied by investigating its effect
on the relative phase φ(t), with the state of each spin
evolving in time as |ψ(t)〉 =

(
|↓〉+ eiφ(t) |↑〉

)
/
√

2. We
propose a novel scheme that enables continuous tracking
of this relative phase. Our scheme continuously and di-
rectly measures the real-time phase φ(t) unlike the widely
used Ramsey sequence [1–12], which indirectly measures
the net accumulated phase φ(T ) during an interrogation
time T . The typically destructive readout in a Ram-
sey sequence requires multiple state resets, rotations and
repetitions of the sequence to infer the phase at differ-
ent times from a population difference. In contrast, a
single run of our protocol yields a continuous time series
of phase measurements. Therefore, our scheme enables
real-time tracking of time-varying signals that are not
reproducible.

As an added benefit, our scheme yields continuous
phase estimates with precision well beyond the standard
quantum limit (SQL) of ∆φSQL = 1/

√
N radians that

limits readout precision with N unentangled spins. In
comparison to several proposals and experiments [13–19]
that have demonstrated squeezed states with precision
beyond the SQL, our scheme enjoys the advantage that
the squeezing is produced, the phase accumulated, and
the readout performed, all in the same spin quadrature.

Recent experiments have demonstrated phase tracking
of a spin using quantum non-demolition (QND) measure-
ments via a Faraday rotation angle [20]. In contrast, our
proposal is based on interfering Raman transitions in a
cavity and enables an intuitive interpretation of phase
tracking in terms of elementary atom-cavity interactions
that nearly balance one another. Our scheme directly
reveals a phasor precessing in the equatorial plane of a
Bloch sphere, in the spirit of the “hand on a clock” anal-
ogy at the core of quantum metrology.

We represent the collective angular momentum of N
atomic spins by a classical Bloch vector of length N/2

FIG. 1. Schematic and working principle. (a) Two lasers
drive a collection of atoms to interact with a cavity mode.
The relative phase φ(t) can be continuously tracked by ho-
modyne detection of the field leaking out. (b) Cavity-assisted
Raman transitions: The red (blue) pathway leads to the emis-
sion of a cavity photon accompanied by a spin flip |↓〉 → |↑〉
(|↑〉 → |↓〉). (c) Hierarchy of frequencies. (d) Classical Bloch
vector picture: The red and blue pathways set up balanced,
opposing superradiance pathways that lead to a coherent can-
cellation of the intracavity field when the Bloch vector (green)
is along the y-axis (φ = 0). When the Bloch vector has a
small x-component (φ 6= 0), the intracavity field from the two
pathways add constructively, giving rise to non-zero output
field.

with components Jx, Jy, Jz (Fig. 1(d, left)). With
all spins initially in the same equal superposition state,
the Bloch vector lies in the equatorial plane along a
direction that we define as the y-axis. As the phase
evolves, the Bloch vector acquires a small x-component,
Jx = N

2 sinφ(t) ≈ N
2 φ(t), for small deflections, and we

propose a straightforward extension to large deflections
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in the conclusion. We arrange atom-cavity interactions
wherein a cavity field quadrature is sourced by Jx. Con-
tinuous homodyne detection of this quadrature amounts
to real-time, continuous, QND measurement of φ(t).

We consider N atoms trapped at the antinodes of a
cavity with resonance frequency ωc and decay rate κ, as
shown in Fig. 1(a). The states |↓〉 and |↑〉 have an energy
separation h̄ω0 � h̄κ and form a pseudospin-1/2 system
described by the Pauli spin operators σ̂i, i = x, y, z, with
raising (lowering) operators σ̂+ (σ̂−). The N atoms form
a collective spin with total angular momentum compo-
nents Ĵx, Ĵy, Ĵz, with Ĵi =

∑N
j=1 σ̂

j
i /2. We assume the

dipole-allowed transitions |↓〉 ↔ |e〉 and |↑〉 ↔ |e〉 with
frequencies ω↓e and ω↑e to be respectively driven using
lasers with frequencies ω1 and ω2 in a far-detuned regime
with detuning ∆� ω0, κ, allowing for the adiabatic elim-
ination of |e〉 [21]. The two drive lasers differ by a fre-
quency 2ω0 (Fig. 1(c)) and do not by themselves drive
|↓〉 ↔ |↑〉 Raman transitions; however, they are symmet-
rically detuned by ω0 from ωc and participate in cavity-
assisted Raman transitions as illustrated in Fig. 1(b) [22].
When the Rabi frequencies of the two drive lasers are
balanced, i.e. Ω1 = Ω2 = Ω0, the atom-cavity Hamil-
tonian, to leading order in 1/∆, is simply the sum of a
Jaynes-Cummings and an anti-Jaynes-Cummings inter-
action and is given by [22]

ĤQND =
h̄ΩQND

2
X̂Ĵx. (1)

Here X̂ = (â+ â†)/
√

2 is the amplitude quadrature, with
â, â† the annihilation and creation operators for the cav-
ity mode, and Ŷ = (â − â†)/

√
2i is the conjugate phase

quadrature such that [X̂, Ŷ ] = i. The atom-cavity inter-
action strength is ΩQND =

√
2Ω0g0/∆ with g0 the single

atom-cavity vacuum Rabi frequency. If the two drive
lasers have initial phases ψ1 and ψ2, the cavity quadra-
ture

(
â†ei(ψ1+ψ2)/2 + H.c.

)
is coupled to the spin com-

ponent
(
Ĵ+e

i(ψ1−ψ2)/2 + H.c.
)

, where Ĵ+ = Ĵx + iĴy.

Here we assume ψ1 = ψ2 = 0 without loss of generality.
Classically, the intracavity fields established by the two

balanced drives exactly cancel when Jx = 0 (Fig. 1(d)).
However, even with 〈Ĵx〉 = 0, 〈Ĵ2

x〉 6= 0, i.e. quantum
fluctuations source the Y quadrature of the cavity field.
In the regime κ2 � NΩ2

QND, Ŷ is slaved to Ĵx as

Ŷ (t) ≈ −ΩQND

κ
Ĵx(t) + F̂(t), (2)

where the noise operator F̂(t) arises from coupling of the
cavity mode to external modes through the lossy mir-
ror (Fig. 1(a)) [23, 24]. The field leaking out is to be
monitored via balanced homodyne detection using a lo-
cal oscillator at frequency (ω1 + ω2)/2 with phase tuned
to detect the output field quadrature that is sourced by
the intracavity Y quadrature. The photocurrent thus

recorded is a measurement of the Y quadrature which,
from Eq. (2), amounts to measuring Jx.

Measurement back-action in the Jz quadrature arises
because of the indistinguishability of the two pathways
that give rise to the intracavity field (Fig. 1(b)): The
field leaking out is consistent with equal probability am-
plitudes for tipping the Bloch vector above or below the
equator and therefore increases the spread in Jz without
affecting its mean value.

The drive lasers also lead to undesirable, off-resonant
free-space scattering processes with total rate γsc that
degrade atomic coherence. We consider three such single-
atom decoherence mechanisms [22]: (a) dephasing with
probability rd: random rotation about the z-axis, (b)
spontaneous Raman spin flips : |↓〉 → |↑〉 (r↓↑) and |↑〉 →
|↓〉 (r↑↓), and (c) atom loss (rl): the atom decays to a
state |s〉 outside the |↓〉 − |↑〉 manifold and no longer
interacts with the cavity mode. The probabilities are
related by rd + r↓↑ + r↑↓ + rl = 1.

Under continuous measurement, the dynamics of the
density matrix ρ of the atom-cavity system is governed
by the stochastic master equation [25–27]:

ρ̇ =− i/h̄[ĤQND, ρ] + κD[â]ρ+ γsc

∑N
j=1 L

j
1ρ

+
√
ηκξ(t)

(
iρâ† − iâρ−

√
2〈Ŷ 〉ρ

)
, (3)

with decoherence effects bundled in Lj1ρ, given by

Lj1ρ = r↓↑D[σ̂j+]ρ+ r↑↓D[σ̂j−]ρ+
rd
4
D[σ̂jz]ρ

+
rl
2

(
D
[
|s〉j 〈↓|j

]
ρ+D

[
|s〉j 〈↑|j

]
ρ
)
, (4)

with D[Ô]ρ = ÔρÔ† − Ô†Ôρ/2 − ρÔ†Ô/2, the Lind-
blad dissipator. In Eq. (3), η is the detection efficiency,
and ξ(t) is a white-noise process satisfying ξ(t) = 0 and
ξ(t)ξ(t′) = δ(t− t′). The measured photocurrent i(t) is

i(t) = Ge|αLO|
(
η
√

2κ〈Ŷ 〉+
√
ηξ(t)

)
, (5)

with detector gain G, electronic charge e, and local oscil-
lator photon flux |αLO|2 with units of photons/time.

With no decoherence, measuring for very long times
will result in preparing states arbitrarily close to Dicke
states in the Jx basis. However, decoherence restricts
the maximum achievable squeezing well before the state
begins to wrap around the Bloch sphere. This enables
a Gaussian approximation where we only track the dy-
namics of the means and covariances of all operators and
pairs of operators of the atom-cavity system. The 5 oper-
ators X̂, Ŷ , Ĵx, Ĵy and Ĵz result in a total of 20 dynamical
equations [22].

We average the simulated photocurrent (Eq. (5)) in a
window [Ti, Tf] to obtain an estimate as

J (m)
x = − κ

ΩQND
Y (m) =

−(Ge|αLO|)−1

η
√
Cγsc(Tf − Ti)

∫ Tf

Ti

i(t)dt,

(6)
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where C = 2Ω2
QND/κγsc is the dimensionless atom-

cavity cooperativity [22]. The phase is estimated as

φ(m) = (J
(m)
x /(N/2))/V(t), where the visibility V(t) [28]

accounts for the shortening of the Bloch vector, evaluated
either at the window center or end depending on where
the phase is estimated. While we use a simple averag-
ing procedure for clarity, optimal filters, such as Kalman
filters, can be applied for superior phase tracking [29–31].

The precision of the phase estimate in a window is de-
termined by the window duration. A characteristic time,
T0 = (ηCγsc)−1/(N/4), is the time required to average
down the photon shot-noise (ξ(t) term, Eq. (5)) in es-

timating J
(m)
x (Eq. (6)) to the standard quantum limit

∆J2
x,SQL = N/4.

FIG. 2. Real-time continuous tracking of a time-varying
phase. (a) A single experimental run: A squeezed state is pre-

pared during [−50T0, 0], with the initial measured phase φ
(m)
0

(blue triangle) varying in each run. Subsequently, a phase

modulation φ(a)(t) = 15 mrad × sin(t/40T0) (black line) is
applied e.g. using a time-varying magnetic field. The blue,

filled (red, hollow) markers are estimates φ
(m)
SSS (φ

(m)
CSS) of the

phase using the measured photocurrent in windows of dura-
tion 8T0 that account for (do not account for) the initial offset

φ
(m)
0 . The gray shaded region indicates the 1-σ SQL tolerance

for this applied signal. Representative Bloch spheres for t ≤ 0
indicate the state before and after the state preparation stage.
For t > 0, Bloch spheres indicate the deflection of the spin as
a result of the phase modulation (black dots on the spheres
indicate the zero phase reference), as well as the equivalent

spin state used for the respective estimates φ
(m)
CSS, φ

(m)
SSS. (b)

Histogram of phase errors φ
(m)
SSS − φ

(a) (blue) and φ
(m)
CSS − φ

(a)

(red) over 2048 runs in one particular measurement window
[48T0, 56T0]. (c) Single-run precision gain of the estimates

φ
(m)
SSS relative to the SQL at different window centers t. Here,

∆φ2
SSS is the variance of Gaussian fits to histograms such as

the blue histogram in (b). Decoherence results in decreased
gain over time.

For our numerical experiments, we use N = 105 atoms

identically coupled to a cavity mode with C = 0.1. We
work in a bad-cavity regime such that NCγsc = 0.2κ,
achievable by arranging for ΩQND = 10−3κ. We adopt
a “symmetric loss” model wherein the three decoherence
mechanisms degrade the atomic coherence at equal rates,
and spin-flips in either direction occur with equal prob-
ability. This implies rd = 1/3, r↓↑ = r↑↓ = 1/6 and
rl = 1/3. Our results are not very sensitive to the specific
choice of relative rates. The loss in visibility only depends
on the total decoherence rate, while the measurement of
Jx marginally improves if the atom loss channel is dom-
inant (see Eq. (8)). Finally, the detection efficiency is
assumed to be η = 0.4 [18].

We now demonstrate the ability of our scheme to track
in real-time, a phase modulation φ(a)(t) applied for t > 0
(Fig. 2(a, black solid line)). At time t = −50T0, the col-
lective spin is initialized to a coherent spin state (CSS)
along the y-axis whose initial phase is φ0 = 0. First, mea-
suring the photocurrent in the state preparation window

[−50T0, 0] gives a phase estimate φ
(m)
0 (blue triangle).

This estimate is obtained at the end of this window using

the procedure described below Eq. (6). The value of φ
(m)
0

varies from trial-to-trial with a variance ∆φ2
SQL = 1/N

corresponding to the phase uncertainty of the initial CSS.
The long state preparation window ensures strong aver-
aging down of the photon shot-noise, leading to a state

with reduced phase uncertainty around φ
(m)
0 , i.e. a spin

squeezed state. For the subsequent real-time tracking,
two choices for the initial phase reference could be used:

φ0(= 0) or φ
(m)
0 .

During the time [0, 200T0], we average the photocur-
rent in windows of duration 8T0 to extract a raw phase
estimate φ(m)(j) for window j = 1, 2, . . .. We con-
struct two estimates for the phase at the window cen-

ters, φ
(m)
CSS(j) = φ(m)(j) − φ0 (hollow red squares), and

φ
(m)
SSS(j) = φ(m)(j)−φ(m)

0 (filled blue squares). The preci-
sion of these estimates is determined not just by the win-
dow duration over which the raw estimate is obtained,
but also by the precision of the phase reference. To de-
termine the single-run precision of these estimates, we
run 2048 trials of the experiment and histogram the er-
ror in these estimates, an example of which is shown
in Fig. 2(b) for the window [48T0, 56T0]. The estimates

φ
(m)
CSS use the imprecise zero phase φ0 of the initial CSS

as reference, and lead to a broad error histogram (red).

In contrast, the estimates φ
(m)
SSS lead to a narrow error

histogram (blue) whose spread is instead dominated by
the imprecision in obtaining the raw estimates φ(m)(j)
over short windows (here, 8T0), demonstrating the im-

proved precision of the phase reference φ
(m)
0 over φ0 [32].

In Fig. 2(c) we show that the variance ∆φ2
SSS of the es-

timates φ
(m)
SSS is significantly less than ∆φ2

SQL in all win-
dows over the time we consider here, demonstrating the
potential for real-time phase tracking with precision be-
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yond the SQL.

FIG. 3. (a) A sudden jump in the phase with amplitude
φJ = 40 mrad at TJ = 50T0 is tracked in the same run using
moving windows of durations TW = 2T0 (red) and TW = 20T0

(blue), showing the faster response of the shorter window. (b)
Protocol to estimate φJ. (c) Histograms, over 2048 runs, of

φ
(m)
J for TW = 2T0 (red) and TW = 40T0 (blue), demonstrat-

ing the higher precision of the longer window. For TW = 2T0,
W2 was offset by a small time 0.2T0 to allow transients on
timescales of κ−1 to decay. (d) Gain in precision over a CSS
in Ramsey mode as the duration of W1 and W2 is varied, for
fixed Cγsc and different values of C. Analytic results (lines)
calculated using Eqs. (7) and (8) are in excellent agreement
with simulations (markers).

An advantage of our scheme is that the same photocur-
rent data from a single run can be analyzed using multi-
ple methods to extract varying information. As a demon-
stration, we use varying window durations TW to extract
precise timing and amplitude information from a sudden
jump in phase (at TJ = 50T0 in Fig. 3(a)). Starting with
an initial CSS at t = 0, we continuously estimate the
phase by averaging the photocurrent over moving win-
dows of durations TW = 2T0 (red) and TW = 20T0 (blue).
Clearly, the shorter window reproduces the time variation
of the phase more precisely. To estimate the amplitude of

the jump φJ, we compute the difference φ
(m)
J in the esti-

mates φ
(m)
W1

, φ
(m)
W2

in the two windows W1 ≡ [TJ−TW, TJ]
and W2 ≡ [TJ, TJ + TW] that border the jump time TJ

(Fig. 3(b)) [33]. While the shorter window results in
faster response, the longer window gives a more precise
estimate of the jump amplitude (Fig. 3(c)).

Alternatively, the sudden phase jump in the protocol
depicted in Fig. 3(b) can be replaced with a “dark” phase
accumulation time of duration TD where no measure-
ments are performed. The scheme can then be identi-
fied as a Ramsey-like sequence where a squeezed state is
prepared in W1, phase accumulates in an interrogation
time TD, and finally, phase is read out in W2, without

ever converting the phase information into a population
difference. In this Ramsey mode, the achievable gain in
phase resolution using the prepared squeezed state com-
pared to a CSS is

∆φ2
SQL

∆φ2
=

∆J2
x,SQL(

∆J
(m)
x,diff.

)2V
2, (7)

where J
(m)
x,diff = J

(m)
x,W2

− J (m)
x,W1

and V is the visibility at
the end of the first window [17, 18]. Fig. 3(d) plots
the numerically extracted gain (markers) versus the win-
dow duration TW for different values of cooperativity C.

Gaussian fits to histograms of J
(m)
x,diff. were used to ex-

tract values for (∆J
(m)
x,diff.)

2. We find analytically that
the normalized variance in the difference measurement
varies with TW as [22]

(∆J
(m)
x,diff.)

2(TW)

∆J2
x,SQL

= 2
T0

TW
+

8β

3ηNC

TW

T0
, (8)

where β = rd+r↓↑+r↑↓+rl/2, giving a minimum normal-

ized variance of 8
√
β/3ηNC at T opt

W = T0

√
3ηNC/4β.

The expression for β shows that the normalized variance
is not very sensitive to the relative probabilities of the
decoherence mechanisms. For typical values of C ∼ 0.1
and N ∼ 105, Fig. 3(d) shows that a gain upwards of
11 dB can be achieved. The (NC)−1/2 scaling of the

minimum normalized variance in J
(m)
x,diff leads to an opti-

mal phase resolution scaling as ∆φ ∼ N−3/4 compared
to ∆φSQL = N−1/2 radians.

In conclusion, we have proposed and analyzed a
scheme for continuous real-time tracking of a quantum
phase with precision beyond the SQL. Interfering cavity-
assisted Raman transitions have been considered previ-
ously for deterministic squeezing schemes [34] and quan-
tum simulations of the Dicke model [35–37]. The fre-
quency arrangement of our drive lasers is also related
to two-tone drive schemes for back-action evading mea-
surements of mechanical oscillators [26, 38, 39] and for
measuring the state of individual superconducting qubits
[40, 41]. Furthermore, while Ramsey sequences only
measure phase changes unambiguously in the interval
[−π/2, π/2], our scheme readily extends to tracking large
excursions |φ(t)| � π: The measured current i(t) can be
used in a feedback loop [42–46] to adjust the differen-
tial phase offset ψ1 − ψ2 of the drive lasers such that
i(t) is continuously driven back to zero. The feedback
loop continuously adjusts the spin component probed by
the cavity mode such that it is always perpendicular to
the mean spin direction, while mapping the phase φ(t)
onto the feedback signal as φ(t) = (ψ1 − ψ2)/2. This
way, large phase excursions can be tracked while remain-
ing in the small angle measurement limit, also greatly
suppressing sensitivity to variations or uncertainties in
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scale factors relating i(t) to φ(t), including uncertainties
in atom number [22]. By encoding the spins in hyper-
fine levels that have an intrinsic splitting, our scheme
has the unique capability to greatly increase the unam-
biguous interval of phase evolution that can be continu-
ously tracked, for example in atomic clocks. While feed-
back schemes using intermittent non-demolition popula-
tion measurements have been used to extend this interval
in a Ramsey-like sequence [47], our scheme continuously
tracks the phase and removes the need for state rotations
altogether. It will be interesting to see if this scheme can
be adapted to optical clock transitions, perhaps in 87Sr.

We would like to thank Chengyi Luo, John Cooper,
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discussions. This work was supported by NSF PFC grant
number PHY 1734006, DARPA Extreme Sensing, and
NIST.
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