

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Pair Creation with Strong Laser Fields, Compton Scale X Rays, and Heavy Nuclei

B. Hafizi, D. F. Gordon, and D. Kaganovich Phys. Rev. Lett. **122**, 233201 — Published 13 June 2019 DOI: 10.1103/PhysRevLett.122.233201

Pair Creation with Strong Laser Fields, Compton Scale X-Rays and Heavy Nuclei

B. Hafizi, D.F. Gordon & D. Kaganovich

Naval Research Laboratory

Washington DC 20375

Abstract

Electron-positron pair creation is considered when intense laser pulses collide head-on with <1 MeV X-ray photons in the presence of stationary Coulomb charges Z(-e). The analysis employs Coulomb-corrected Volkov states and is not limited to Born's approximation in Z. The cross-section and the yield increase dramatically with increasing Z, potentially enabling i) measurable yields with petawatt lasers and ii) sensitive tests of strong-field QED.

Vacuum has characteristics resembling a tangible medium due to the coupling of its *virtual* particle-antiparticle field with external fields [1,2]. It has complex-valued permittivity and permeability tensors [3-9] and manifests nonlinear properties in uncommonly intense fields [10-15]. Figure 1 (a) shows pair creation *ex nihilo* by collision of two photons $\gamma + \gamma \rightarrow e^- + e^+$ in what is referred to as the Breit-Wheeler process [2,16].

With intense lasers the rates for many QED processes enter the realm of observation [eg, 15-32]. SLAC's pioneering photoproduction $\gamma + n\omega \rightarrow e^- + e^+$ experiments ushered in a new era by colliding high-energy photons γ with *n* TW-class laser photons ω [16,33-35]. For this variant of the Breit-Wheeler process [2, eg, 36-44] to be allowed the Mandelstam invariant \sqrt{s} must exceed 2m, imposing a lower bound on the integer *n*. The high-energy photons were generated by Compton scattering laser photons from : 50GeV electrons, enabling the reaction with n > 4. Analysis of QED processes in intense fields is facilitated by known *exact* solutions of Dirac's equation representing dressed electron/positron states (Volkov states) [2,16].

Positrons can be also produced in the presence of an external charge Z(-e) via the Bethe-Heitler process $\gamma + Z \rightarrow Z + e^- + e^+$, Fig. 1(b) [2,16 and eg, 45-51]. Variants of Schwinger, of Breit-Wheeler, of Bethe-Heitler processes, and combinations thereof, have been analyzed [eg, 27,52-71]. Lorentz boosts when *relativistic nuclei* are employed enhance the production rate [eg, 49,53-56,58,68]; the yield has been determined for LHC-class nuclei in the Born approximation, assuming $Z\alpha = 1$ ($\alpha = e^2/h c$) [72,73].

The pair production rate depends sensitively on the ratio of the laser electric field E_L to the Schwinger electric field $E_s = m^2 c^3 / h |e|$. When E_L / E_s is small the process is in the tunneling regime where the rate is exponentially small, scaling as : e^{-E_s/E_L} [eg, 59,60]. In the opposite limit the exponential factor does not appear, and the rate is far more prolific [eg, 68]. In order to access the prolific regime of the Breit-Wheeler process using currently available lasers, GeV class photons are required [33-35]. The process considered here is sketched in Fig. 2 (a), where laser photons collide head-on with high-energy ($< 2 mc^2$) photons in the presence of stationary nuclei with high - Z—wherein the Born approximation is inapplicable [74]. For this process the assist given by X-ray photons with frequency ω_x to leptons to tunnel through the barrier is conveniently measured by parameters κ, ξ defined by

$$\begin{aligned} \kappa &= h \ \omega_{\chi} \ / \ 2m \ c^{2} \\ \xi &= \sqrt{1 - \left(\sqrt{8 + \kappa^{2}} - \kappa\right) \kappa \ / \ 2} \ . \end{aligned}$$
 (1)

The pair production rate is now proportional to : $C_2(Z) e^{-\beta}$, where $\beta = 4\sqrt{3} \xi^3 (E_S/E_L)/(1+\xi^2)$ [Eqs. (7) and (8) below]. When β ? 1 the rate is again exponentially small. However, the factor in the exponential involving ξ rapidly vanishes as h $\omega_x \rightarrow 2mc^2$ ($\kappa \rightarrow 1, \xi \rightarrow 0$), thus enhancing the production rate. Additionally, $C_2(Z)$ is a very strong function of Z. This shows that i) the rate is strongly enhanced by the presence of Coulomb charges, and ii) the prolific regime can be accessed with ~1 MeV photons. This paper explores the regime β ? 1 leaving the opposite limit for future research. There are numerous analyses of QED in the presence of strong laser fields. The very large increase in the pair production yield with Z to be demonstrated here can be useful for testing predictions of QED in the presence of strong Coulomb fields without requiring high-energy photons in the same class as SLAC's or LHC-class nuclei.

The *s* -matrix element for pair creation mediated by X-rays with vector potential A_x^{μ} is given by [75,76] $S_{fi} \equiv -i(e/ch) \int d^4 y \,\overline{\Psi}_f(y) A_x(y) \Psi_i(y)$ $(f \neq i)$, with the interpretation that a positron $\Psi_i(y) \equiv \sqrt{mc^2/E_+V} v(p_+,s_+) \exp[iS_+(y)/h]$ with 4-momentum p_+ $(E_+/c = p_+^0 > 0)$ and polarization s_+ is created at *y* along with an electron $\Psi_f(y) \equiv \sqrt{mc^2/E_-V} u(p_-,s_-) \exp[iS_-(y)/h]$ with 4-momentum $p_ (E_-/c = p_-^0 > 0)$ and polarization s_- . Feynman's slash notation $A_x \equiv \gamma \cdot A_x$ is employed, γ^{μ} are the Dirac matrices, e(<0) is the charge on an electron and u(p,s), v(p,s) are bispinor plane wave amplitudes normalized in a box of volume *V*.

The action S(y), governed by the vector potential 4-vectors of the laser $A_L^{\mu} = (0, \mathbf{A})$ and of the Coulomb charge $(V, \mathbf{0})$, determine the Coulomb-corrected Volkov states $\Psi(y)$. The laser field, in the radiation gauge, has wavenumber 4-vector k satisfying $\partial A_L = k \cdot A_L = k \cdot k = 0$. Use is made of the expansion $S(y) = S_0(y) + (h/i)S_1(y) + ...$ reflecting the quasi-classical nature of the solution. There is a further expansion $S_j(y)=S_j^{(0)}(y)+S_j^{(1)}(y)+...$ (*j*=0,1,...) wherein the effects of the Coulomb field are incorporated perturbatively but in the exponent [77]. Thus

$$S_0^{(0)}(y) = \mathbf{m} p \cdot y - \int^{k \cdot y} d\phi \left(\frac{e p \cdot A_L}{c k \cdot p} \mathbf{m} \frac{e^2 A_L \cdot A_L}{2c^2 k \cdot p} \right),$$

 $S_1^{(0)}(y) = \pm e k A_L / 2c k \cdot p$, give the usual Volkov solution [2,16], where $\varphi = k \cdot y$ and the upper (lower) sign refers to electrons (positrons), and the Coulomb action $S_0^{(1)}(y) = m(e/c^2) \int^{k \cdot y} d\varphi V[y(\varphi)] E[y(\varphi)] / k \cdot p$ is ordered to be smaller but its contribution in the *exponent* supersedes Born's approximation. These three contributions to the action define the thick external lines in Fig. 2 (b), constituting Coulomb-corrected Volkov (dressed) states.

The laser field $A_L^{\mu}(y) = -A_L \varepsilon_L^{\mu} \cos(k \cdot y)$ is linearly polarized, where $k^{\mu} = (\omega/c, \mathbf{k})$, ω is the frequency, $\hat{\mathbf{k}}$ is the unit 3-vector along the propagation direction and ε_L^{μ} is the polarization. The X-rays are described by electric field $\mathbf{E}_X(k_X \cdot y)$, frequency $\omega_X = ck_X^0$ and vector potential $A_X^{\mu}(y) = (-\mathbf{y}.\mathbf{E}_X, -\hat{\mathbf{k}}_X \mathbf{y}.\mathbf{E}_X)$ in the *electric field gauge* [77-79, Supplemental Material [80]], where $\hat{\mathbf{k}}_X$ is a unit 3-vector in the propagation direction and $A_X \cdot A_X = 0$. Taking $\mathbf{E}_X = \sqrt{2\pi \ln \omega_X / V} \hat{\mathbf{\epsilon}}_X \left(e^{ik_X \cdot y} + e^{-ik_X \cdot y} \right)$, where $\hat{\mathbf{\epsilon}}_X$ is a unit 3-vector along the polarization direction, it follows that $A_X^{\mu}(y) = -\mathbf{y}.\mathbf{E}_X \varepsilon_X^{\mu}$, with $\varepsilon_X^{\mu} = (1, \hat{\mathbf{k}}_X)$, with one photon of energy h ω_X in volume V.

In SLAC's experiments with GeV-class X-rays a few laser photons sufficed for photoproduction. With infra-red lasers and moderate energy h $\omega_x < 1$ MeV X-rays, on the other hand, > 10⁶ laser photons will be required. This limit corresponds to *tunneling* through a barrier [81] and the quasi-classical approach is applicable [82]. This approach is valid if i) laser electric field $E_L \equiv \omega A_L / c = E_s$ and ii) laser photon energy h $\omega = mc^2$. The tunneling frequency is $\omega_t = |e|E_L/mc$ [15] whence $\omega_t/\omega = |e|E_L/mc\omega$, the significance of which is that for ω_t/ω ? 1 tunneling takes place before the field changes significantly. This *adiabatic* limit corresponds to $-a = (-e)E_L/mc\omega$? 1.

The *s* -matrix element is given by

$$S_{fi}(p_{-},p_{+}) = -i\frac{e}{ch}\sqrt{\frac{mc^{2}}{E_{-}V}}\sqrt{\frac{mc^{2}}{E_{+}V}}\int d^{4}y \ e^{i\Phi(y)}\left[\overline{u}(p_{-},s_{-})\ M_{res}(y)\ v(p_{+},s_{+})\right],$$
(2)

where $M_{res}(y)$ and $\Phi(y)$ are given in the Supplemental Material [80]. The momentum distribution of the $e^- - e^+$ pair is proportional to $|S_{fi}(p_-, p_+)|^2$. The distribution is dominated by the exponential $\exp(-2 \operatorname{Im} \Phi)$, where $\Phi(p_-, p_+)$ is given by Eq. (1) in the Supplemental Material [80]. For a laser beam with $k^{\mu} = (\omega/c)(1,0,0,1)$ and $\varepsilon_{L}^{\mu} = (0,0,1,0)$ the distribution peaks near the vertex of the elliptic paraboloid

$$\frac{p_{z0}}{mc} = \frac{\xi^2}{2\sqrt{1+\xi^2}} + \frac{1}{2}\sqrt{1+\xi^2} \left(\frac{p_y}{mc}\right)^2 + \frac{1}{2}\frac{\sqrt{1+\xi^2}}{3+\xi^2} \left(\frac{p_x}{mc}\right)^2 , \qquad (3)$$

where

$$\operatorname{Im} \Phi^{0}(p_{x}, p_{y}, p_{z}) \approx \frac{-\lambda / \pi D_{c}}{3a \sqrt{1 - (p_{y} / mca)^{2}}} \left\{ \frac{(\sqrt{3}\xi)^{3}}{1 + \xi^{2}} + \frac{2\sqrt{3}(3 + \xi^{2})\xi}{[2 + \xi^{2} + (p_{y} / mc)^{2}(1 + \xi^{2})]^{2}} \left(\frac{p_{z} - p_{z0}}{mc}\right)^{2} + \frac{3\sqrt{3}\xi}{2} \left(\frac{p_{x}}{mc}\right)^{2} \right\},$$
(4)

and D $_{c}$ =h /mc is the reduced Compton wavelength.

Incorporating the contribution of the Coulomb potential $V=Z(-e)/\sqrt{\mathbf{y}(\mathbf{\phi})\cdot\mathbf{y}(\mathbf{\phi})}$, the phase in Eq. (2) is

$$\Phi(y) = \Phi - \frac{1}{h} (p_{-}^{1} + p_{+}^{1}) x - \frac{1}{h} (p_{-}^{2} + p_{+}^{2}) y + q z + v \log \frac{[p_{s}'r + z p_{z}(\varphi_{s}) + y p_{y}(\varphi_{s})]_{-}}{[p_{s}'r - z p_{z}(\varphi_{s}) - y p_{y}(\varphi_{s})]_{+}},$$
(5)

where $p_z(\varphi_s)$, $p_y(\varphi_s)$, $p_y(\varphi_s)$, $p_y(\varphi_s)$, q are given by Eqs. (3)-(5) and (7) in Supplemental Material [80], $r = \sqrt{z^2 + y^2}$ and

$$v = mi Z \alpha \kappa / \sqrt{1 - \kappa^2}$$
(6)

is the analogue of Sommerfeld's parameter [83,84]. [The \pm signs in Eq. (6) are associated with branches of the square-root function and not with the particles.] For the high laser intensities of interest portions of the figure-8 orbit along *both* the laser electric field *and* the **E**×**B** directions contribute to the Coulomb phase (last) term in Eq. (5). Large X-ray momenta κ enhance the Coulomb coupling to the formed dipole pair—manifested by the appearance of κ in the numerator of Eq. (6). For X-ray momenta $\kappa \to 1$, however, the escaping pair tends to 'stall' and the momentum $p_{g}/mc = \pm i\sqrt{1-\kappa^2} \to 0$, effectively enhancing the influence of the charge Z. This well-known behavior turns out to hold in the classically-forbidden, under the barrier motion here. The time integration in Eq. (2) is carried out along the steepest descents paths and the spatial integration is effected by employing Eq. (5) [Supplemental Material [80]]. The phase is modified by the full logarithmic form of Coulomb wavefunctions [85-89], extending previous analyses.

The differential cross-section $d\sigma$ for $e^- - e^+$ creation is proportional to $|S_{fi}(p_-, p_+)|^2$ and varies as Z^2 for small Z as in standard Bethe-Heitler process [Supplemental Material [80]]. The total cross-section is obtained by integrating over the density of final states. Whilst polarized leptons are critical to discovery of new physics [90-96], for the purposes here it suffices to sum over final spins. Noting that $\lambda ? \lambda_x$, where $\lambda_x \equiv 2\pi/k_x^0$ is the X-ray wavelength, the yield per laser shot is $Y = \pi (c\alpha/\lambda)\tau N_x (n_c L_x D_c^4/\lambda_x^2) \sqrt{D_c/\lambda} C_1 C_2(Z) C_{maxe}$. Here, τ is the laser pulse duration, $N_x = 2Z_{RL} \pi w^2 n_x$ is the number of X-ray photons in the interaction volume $2Z_{RL} \pi w^2$, w and $Z_{RL} = \pi w^2/\lambda$ are the laser spot radius and Rayleigh range, respectively, n_x is the X-ray photon density, n_c is the density of charges, L_x is the x-axis width,

$$C_{1} = \frac{\pi^{3/2} e^{-\beta}}{6\sqrt{-2a} \sqrt[4]{3}} \sqrt{\frac{\sqrt{\kappa^{2} + 8} + \kappa}{\sqrt{\kappa^{2} + 8} - 3\kappa}} \sqrt{\frac{1 + \xi^{2}}{\xi^{5}(1 + \xi^{2} / 3)}},$$

$$\beta = 4\sqrt{3} \xi^{3} (E_{s} / E_{L}) / (1 + \xi^{2}) = 2 \lambda\sqrt{3} \xi^{3} / (-a) \pi D_{c} (1 + \xi^{2}),$$

$$C_{2}(Z) = \frac{2^{7 - 4|v|} \pi^{3/2} |v|}{\rho} \left[\frac{(2|v| - 1) \Gamma(\frac{3}{2} - 2|v|)}{\Gamma(-2|v|)} \eta^{4|v|} + \frac{2^{8|v|}(1 + 2|v|) \Gamma(\frac{3}{2} + 2|v|)}{\Gamma(2|v|)} \frac{1}{\eta^{4|v|}} \right],$$

$$(8)$$

$$C_{trace} = e^{\beta} \int_{-\sqrt{\beta}}^{\sqrt{\beta}} ds \ M(s) \left(\vartheta^{2} + s^{2} / \beta\right)^{-1} \exp\left(-\beta / \sqrt{1 - s^{2} / \beta}\right),$$

$$\begin{split} \mathbf{M}(s) &= 2(1+\xi^{2}) \Big\{ 1+a^{2}/2+a^{2}s^{2}/\beta + (2a^{4}s^{2}/\beta)\cosh[2\operatorname{Im}\varphi_{s}(s)] + (a^{4}/8)\cosh[4\operatorname{Im}\varphi_{s}(s)] \Big\},\\ \rho &= \left(\sqrt{8+\kappa^{2}}-7\kappa\right)^{5} \left(\kappa^{2}-\sqrt{8+\kappa^{2}}\kappa+2\right)^{3/2}/6\sqrt{6} \ , \ \eta \ = \ \sqrt{\left(1-3\kappa/\sqrt{8+\kappa^{2}}\right)/2} \ , \ \vartheta &= \sqrt{(2+\xi^{2})/(1+\xi^{2})}/(-a) \ \text{and}\\ \varphi_{s}(s) &= \cos^{-1} \bigg[s/\sqrt{\beta}+i\sqrt{3\left(\sqrt{8+\kappa^{2}}-3\kappa\right)\left(\sqrt{8+\kappa^{2}}+\kappa\right)}/4a \bigg] \,. \end{split}$$

The X-ray pulse duration is $\geq 4Z_{RL}/c$? τ .

Two restrictions of the theory must be noted. First, the quasi-classical approximation requires β ? 1. This parameter depends on the laser amplitude [Eq. (7)] and dominates the yield since it appears in the exponent of C_1 . Reducing the assist provided by the X-rays [ie, reducing κ in Eq. (1)] decreases the yield. However, the yield can be restored by increasing the laser intensity (ie, E_L). Second, the circle of convergence for $C_2(Z)$ in Eq. (8) imposes the restriction $|v| < \frac{34}{4}$ on the Sommerfeld parameter defined in Eq. (6) [Eqs. (6) and (8) in Supplemental Material [80]]. Equation (6) then imposes a maximum value of *Z* for a given X-ray momentum h k_x^0 . This limitation of the analysis, however, is not fundamental to the physics.

With these provisos, Fig. 3 (a) shows the yield for a 10 PW laser and for X-ray photons with $\kappa = 0.925, 0.95, 0.98$. Figure 3 (b) shows the results for a higher-power laser—1 EW—and for X-ray photons with $\kappa = 0.6, 0.75, 0.925$. The plots highlight the fact that the yield depends on laser power and X-ray momentum through the combination captured by the expression for β in Eq. (7) [73]. What is new is the very rapid increase in the yield with both X-ray momentum and Coulomb charge *z*. This expands the window for probing strong-field QED since comparison between the theory here and experiment extends to Coulomb charges exceeding the validity of Born's approximation. In this connection it should be pointed out that—as noted in the previous paragraph—the circle of convergence for Eq. (8) is limited by $|v| < \frac{3}{4}$. The solid portions of the curves in Figs. 3 (a) and (b) lie within the circle of convergence, whilst the dashed portions go beyond it. For the 1 EW, $\kappa = 0.6$ example the theory holds along the entire curve—ie, for $1 \le z \le 137$. In order to obtain accurate results in the space occupied by the dashed curves, approximations must be removed in both the expression for the Coulomb-corrected Volkov state, and in the subsequent integrations [see Supplemental Material [80]]. Numerical treatment is a possible solution.

The momentum distribution for Z = 18 (Ar), $\kappa = 0.98$ and a 10 PW laser is shown Fig 3 (c). Specifically, it is a plot of the differential cross section *per nucleus* per normalized momentum cubed $d\sigma[b]/d^3 \bar{p}$ [with $d^3 \bar{p} = dp_y dp_z d \delta p_y / (mc)^3$], integrated over $dp_x d \delta p_z$. After integrating over the remaining momenta the cross-section per nucleus is ≈ 70 pb. The y - momentum of the pair is nearly balanced—save for a small difference δp_y that develops since the electron and the positron have opposite coupling to the Coulomb charge. The central findings of this paper exemplified by Fig. 3 are i) the rapid rise of the yield with κ and *z* implying high sensitivity—a feature that can be helpful in testing QED—and ii) the pair occupies an organized and compact region of momentum space as shown in Fig. 3 (c). The context of Fig. 3 (c) can be further appreciated by comparing with momentum distributions arising in ordinary tunneling ionization of atoms [eg, [77]].

Several mechanisms are available for generation of high-energy photons [eg, 33, 97,98]. Laser-driven wakefield electrons can serve to generate the <1 MeV X-rays considered here. One possibility is to derive pulses for X-ray generation and pair creation from the same chirped pulse amplification system. The two pulses are routed through different compressors in order to allow for differing pulse durations.

Positrons find use in positron emission tomography, testing fundamental symmetries of nature and are *sine qua nons* in lepton colliders [99,100]. For the latter they are conventionally generated by pair-production in high – *z* moderators [101,102]. Laser-driven configurations— with positron generation induced via ponderomotive/wakefield acceleration of electrons in plasma—can be prolific sources [97,98,103-107]. Whilst laser drive enhances flexibility, laser repetition rate, positron bunch energy spread and emittance will ultimately determine the utility of this approach [105,108].

In summary the tunneling regime of pair creation can be accessed using PW-scale lasers alone. The PW laser pulse collides with X-rays in a medium of heavy, stationary nuclei. The Xray energy is engineered to be below the threshold for ordinary pair creation, such that many laser photons are required to make up the deficit. The positron yield is increased by orders of magnitude relative to the laser alone, and without the need for a large accelerator. In order to attempt such an experiment, a number of details remain to be explored, such as identifying sources of noise, and determining the parameters that optimize the signal to noise ratio. The process described arises automatically in any environment consisting of ultra-intense fields, Xrays and nuclei.

Acknowledgment

The authors have benefited from discussions with Dr. T-G. Lee. This work was supported by NRL 6.1 Base Funds and by DoE.

References

[1] J. Schwinger, Phys. Rev. 82, 664 (1951).

[2] V. B. Berestetskiĭ, E. M. Lifshitz and L. P. Pitaevskiĭ, *Quantum Electrodynamics* (Butterworth-Heinemann, Oxford, UK, 2008).

- [3] J. J. Klein and B. P. Nigam, Phys. Rev. 135, B1279 (1964).
- [4] J. J. Klein and B. P. Nigam, Phys. Rev. 136, B1540 (1964).
- [5] Z. Bialynicka-Birula and I. Bialynicki-Birula, Phys. Rev. D 2, 2341 (1970).
- [6] S.L. Adler, Ann. Phys. (NY) 67, 599 (1971).
- [7] E. Brézin and C. Itzykson, Phys. Rev. D 3, 618 (1971).
- [8] B. King and T. Heinzl, High Power Laser Sci. Eng. 4, e5 (2016).
- [9] S. Bragin, S. Meuren, C.H. Keitel and A. Di Piazza, Phys. Rev. Lett. 119, 250403 (2017).

[10] H. R. Reiss, J. Math. Phys. **3**, 59 (1962).

[11] A.I. Nikishov and V.I. Ritus, Zh. Eksp. Teor. Fiz. 46, 776 (1964) [Sov. Phys. JETP 19, 529 (1964)].

[12] A.I. Nikishov and V.I. Ritus, Zh. Eksp. Teor. Fiz. 52, 1707 (1967) [Sov. Phys. JETP 25, 1135 (1967)].

[13] V.S. Popov, Pis'ma Zh. Eksp. Teor. Fiz. 13, 261 (1971) [JETP Lett. 13, 185 (1971)].

[14] V.S. Popov, Zh. Eksp. Teor. Fiz. 61, 1334 (1971) [Sov. Phys. JETP 34, 709 (1972)].

[15] V.I. Ritus, Trudy Ordena Lenina Fizicheskogo Instituta im. P. N. Lebedeva Akad. Nauk SSSR 111, 5 (1979) [J. Sov. Laser Res. 6, 497 (1985)].

[16] W. Greiner and J. Reinhardt, *Quantum Electrodynamics* (Springer, Berlin 2009).

[17] L.E. Brown and T.W.B. Kibble, Phys. Rev. 133, A705 (1964).

[18] E. Brézin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).

[19] V. N. Baĭer, V.M. Katkov, A. I. Mil'steĭn and V. M. Strakhovenko, Zh. Eksp. Teor. Fiz. 67, 453 (1974) [Sov. Phys. JETP 40, 225 (1975)].

[20] V. N. Baĭer, V.M. Katkov, A. I. Mil'steĭn and V. M. Strakhovenko, Zh. Eksp. Teor. Fiz. 68, 405 (1975) [Sov. Phys. JETP 41, 196 (1975)].

[21] W. Becker and H. Mitter, J. Phys. A: Math. Gen. 8, 1638 (1975).

[22] V. N. Baĭer, V.M. Katkov, A. I. Mil'steĭn and V. M. Strakhovenko, Zh. Eksp. Teor. Fiz. 69, 783 (1975) [Sov. Phys. JETP 42, 400 (1976)].

[23] V. N. Baĭer, A. I. Mil'stein and V. M. Strakhovenko, Zh. Eksp. Teor. Fiz. 69, 1893 (1975)
[Sov. Phys. JETP 42, 961 (1976)].

[24] N. B. Narozhnyĭ, S. S. Bulanov, V. D. Mur and V. S. Popov, Pis'ma Zh. Eksp. Teor. Fiz.
80, 434 (2004) [JETP Lett. 80, 382 (2004)].

[25] A.I. Mil'steĭn, I.S. Terekhov, U.D. Jentschura and C.H. Keitel, Phys. Rev. A 72, 052104 (2005).

[26] S.S. Bulanov, N.B. Narozhnyĭ, V.D. Mur and V. S. Popov, Zh. Eksp. Teor. Fiz. **129**, 14 (2006) [JETP **102**, 9 (2006)].

[27] S.S. Bulanov, V.D. Mur, N.B. Narozhnyĭ, J. Nees and V.S. Popov, Phys. Rev. Lett. 104, 220404 (2010).

[28] S.V. Bulanov, T. Zh. Esirkepov, M. Kando, J. Koga, K. Kondo and G. Korn, Plasma Phys. Rep. 41, 1 (2015).

[29] F. Mackenroth and A. Di Piazza, Phys. Rev. Lett. 110, 070402 (2013).

[30] D.G. Green and C.N. Harvey, Phys. Rev. Lett. 112, 164801 (2014).

[31] J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin and S. P. D. Mangles, Phys. Rev. X 8, 011020 (2018).

[32] K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C. D. Baird, K. Behm, S. Bohlen, J. M. Cole, D. J. Corvan, M. Duff, E. Gerstmayr, C. H. Keitel, K. Krushelnick, S. P. D.

Mangles, P. McKenna, C. D. Murphy, Z. Najmudin, C. P. Ridgers, G. M. Samarin, D. R. Symes, A. G. R. Thomas, J. Warwick and M. Zepf, Phys. Rev. X 8, 031004 (2018).

[33] C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, W. Ragg, D. L. Burke, R. C. Field, G. Horton-Smith, A. C. Odian, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov and A. W. Weidemann, Phys. Rev. Lett. **76**, 3116 (1996).

[34] D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis and W. Ragg, Phys. Rev. Lett. **79**, 1626 (1997).

[35] C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz. C. Berridge, W. M. Bugg, K. Shmakov and A. W. Weidemann, Phys. Rev. D 60, 092004-1 (1999).

[36] A. Ilderton, Phys. Rev. Lett. 106, 020404 (2011)

[37] K. Krajewska and J. Z. Kamiński, Phys. Rev. A 86, 052104 (2012).

[38] S. Meuren, K.Z. Hatsagortsyan, C.H. Keitel and A. Di Piazza, Phys. Rev. D **91**, 013009 (2015).

[39] A. Wöllert, H. Bauke and C.H. Keitel, Phys. Rev. D 91, 125026 (2015).

[40] S. Meuren, C.H. Keitel and A. Di Piazza, Phys. Rev. D 93, 085028 (2016).

[41] M.J.A. Jansen, J.Z. Kamiński, K. Krajewska and C. Müller, Phys. Rev. D 94, 013010 (2016).

[42] A.I. Titov, B. Kämpfer, A. Hosaka and H. Takabe, Phys. Part. Nucl. 47, 456 (2016).

[43] A. Di Piazza, Phys. Rev. Lett. 117, 213201 (2016).

[44] I. Drebot, D. Micieli, E. Milotti, V. Petrillo, E. Tassi and L. Serafini, Phys. Rev. Accel. Beams **20**, 043402 (2017).

- [45] V. P. Yakovlev, Zh. Eksp. Teor. Fiz. 49, 318 (1965) [Sov. Phys. JETP 22, 223 (1966)].
- [46] N.B. Narozhnyĭ and A.I. Nikishov, Zh. Eksp. Teor. Fiz. 63, 1135 (1972] [Sov. Phys. JETP 36, 598 (1973)].
- [47] M. H. Mittleman, Phys. Rev. A 35, 4624 (1987).
- [48] K. Dietz and M. Pröbsting, J. Phys. B 31, L409 (1998).
- [49] K. Krajewska, J. Z. Kamiński and F. Ehlotzky, Laser Phys. 16, 272 (2006).
- [50] A. A. Lebed' and S. P. Roshchupkin, Laser Phys. 21, 1613 (2011).
- [51] K. Krajewska, C. Müller and J. Z. Kamiński, Phys. Rev. A 87, 062107 (2013).
- [52] R. Alkofer, M. B. Hecht, C. D. Roberts, S. M. Schmidt and D.V. Vinnik, Phys. Rev. Lett. 87, 193902 (2001).
- [53] I.M. Dremin, Pis'ma Zh. Eksp. Teor. Fiz. 76, 185 (2002) [JETP Lett. 76, 151 (2002)].
- [54] H.K. Avetissian, A.K. Avetissian, G.F. Mkrtchian and Kh.V. Sedrakian, Nucl. Instrum. Method Phys. Res. A **507**, 582 (2003).
- [55] C. Müller, A. B. Voitkiv and N. Grün, Phys. Rev. A 67, 063407 (2003).
- [56] C. Müller, A. B. Voitkiv and N. Grün, Phys. Rev. A 70, 023412 (2004).
- [57] V. N. Baĭer and V. M. Katkov, Phys. Rep. 409, 261 (2005).[58] A. I. Mil'steĭn, C. Müller, K. Z. Hatsagortsyan, U. D. Jentschura and C. H. Keitel, Phys.
- Rev. A 73, 062106 (2006).
- [59] M. Yu. Kuchiev and D. J. Robinson, Phys. Rev. A 76, 012107 (2007).[60] M. Yu. Kuchiev, Phys. Rev. Lett. 99, 130404 (2007).
- [61] A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008).
- [62] J.G. Kirk, A.R. Bell and I. Arka, Plasma Phys. Control. Fusion 51 085008 (2009).
- [63] M. Ruf, G.R. Mocken, C. Müller, K.Z. Hatsagortsyan and C.H. Keitel, Phys. Rev. Lett. **102**, 080402 (2009).

- [64] F. Hebenstreit, R. Alkofer, G. V. Dunne and H. Gies, Phys. Rev. Lett. 102, 150404 (2009).
- [65] S.J. Müller and C. Müller, Phys. Rev. D 80, 053014 (2009).

[66] T. Heinzl, A. Ilderton and M. Marklund, Phys. Lett. B 692, 250 (2010).

[67] F. Hebenstreit, R. Alkofer and H. Gies, Phys. Rev. Lett. 107, 180403 (2011).

[68] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

[69] S. Meuren, C. H. Keitel and A. Di Piazza, Phys. Rev. D 88, 013007 (2013).

[70] S. Augustin and C. Müller, Phys. Lett. B 737, 114 (2014).

[71] A. A. Lebed', E. A. Padusenko, S. P. Roshchupkin and V. V. Dubov, Phys. Rev. A **95**, 043406 (2017).

[72] C. Müller, Phys. Lett. B 672, 56 (2009).

[73] A. Di Piazza, E. Lötstedt, A. I. Mil'steĭn and C. H. Keitel, Phys. Rev. Lett. **103**, 170403 (2009).

[74] D.C. Ionescu, Phys. Rev. A 49, 3188 (1994).

[75] J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, NY, 1964).

- [76] J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields (McGraw-Hill, NY, 1965).
- [77] M. Klaiber, E. Yakaboylu and K.Z. Hatsagortsyan, Phys. Rev. A 87, 023418 (2013).
- [78] H.R. Reiss, Prog. Quant. Electr. 16, 1 (1992).
- [79] G.F. Gribakin and M.Yu. Kuchiev, Phys. Rev. A 55, 3760 (1997).
- [80] See Supplemental Material.
- [81] A. Wöllert, M. Klaiber, H. Bauke and C. H. Keitel, Phys. Rev. D 91, 065022 (2015).
- [82] A. Di Piazza and A. I. Mil'stein, Phys. Lett. B 717, 224 (2012).
- [83] G. Breit, Proc. Natl. Acad. Sci. U.S.A. 67, 849 (1967).
- [84] P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301 (2010).
- [85] R.H. Dalitz, Proc. Royal Soc. Lond., Ser. A 206, 509 (1951).

[86] L. Rosenberg, Phys. Rev. D 8, 1833 (1973).

[87] O. Smirnova, M. Spanner and M.Yu. Ivanov, J. Phys. B: At. Mol. Opt. Phys. **39**, S307 (2006).

[88] O. Smirnova, M. Spanner and M.Yu. Ivanov, J. Phys. B: At. Mol. Opt. Phys. **39**, S323 (2006).

[89] O. Smirnova, M. Spanner and M. Ivanov, Phys. Rev. A 77, 033407 (2008).

[90] W.H. McMaster, Rev. Mod. Phys. 33, 8 (1961).

[91] Y.S. Tsai, Phys. Rev. D 48, 96 (1993).

[92] T. Okugi, Y. Kurihara, M. Chiba, A. Endo, R. Hamatsu, T. Hirose, T. Kumita, T. Omori, Y. Takeuchi and M. Yoshioka, Jpn. J. Appl. Phys. **35**, 3677 (1996).

[93] D.Yu. Ivanov, G.L. Kotkin and V.G. Serbo, Eur. Phys. J. C 40, 27 (2005).

[94] T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio and I. Yamazaki, Phys. Rev. Lett. 96, 114801 (2006).

[95] G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A.A. Babich, V. Bharadwaj, D. Barber, A. Bartl, A. Brachmann, S. Chen, J. Clarke, J.E. Clendenin, J. Dainton, K. Desch, M. Diehl, B. Dobos, T. Dorland, H.K. Dreiner, H. Eberl, J. Ellis, K. Flöttmann, H. Fraas, F. Franco-Sollova, F. Franke, A. Freitas, J. Goodson, J. Gray, A. Han, S. Heinemeyer, S. Hesselbach, T. Hirose, K. Hohenwarter-Sodek, A. Juste, J. Kalinowski, T. Kernreiter, O. Kittel, S. Kraml, U. Langenfeld, W. Majerotto, A. Martinez, H.-U. Martyn, A. Mikhailichenko, C. Milstene, W. Menges, N. Meyners, K. Mönig, K. Moffeit, S. Moretti, O. Nachtmann, F. Nagel, T. Nakanishi, U. Nauenberg, H. Nowak, T. Omori, P. Osland, A.A. Pankov, N. Paver, R. Pitthan, R. Pöschl, W. Porod, J. Proulx, P. Richardson, S. Riemann, S.D. Rindani, T.G. Rizzo, A. Schälicke, P. Schüler, C. Schwanenberger, D. Scott, J. Sheppard, R.K. Singh, A. Sopczak, H. Spiesberger, A. Stahl, H. Steiner, A. Wagner, A.M. Weber, G. Weiglein, G.W. Wilson, M. Woods, P. Zerwas, J. Zhang and F. Zomer, Phys. Rep. 460, 131 (2008).

[96] A. Di Piazza, A.I. Mil'stein and C. Müller, Phys. Rev. A 82, 062110 (2010).

[97] T.E. Cowan, M.D. Perry, M.H. Key, T.R. Ditmire, S.P. Hatchett, E.A. Henry, J.D. Moody,
M. J. Moran, D.M. Pennington, T.W. Phillips, T.C. Sangster, J.A. Sefcik, M.S. Singh, R.A.
Snavely, M.A. Stoyer, S.C. Wilks, P.E. Young, Y. Takahashi, B. Dong, W. Fountain, T. Parnell,
J. Johnson, A.W. Hunt and T. Kühl, Laser Part. Beams 17, 773 (1999).

[98] H. Chen, S. C. Wilks, J.D. Bonlie, E.P. Liang, J. Myatt, D.F. Price, D.D. Meyerhofer and P. Beiersdorfer, Phys. Rev. Lett. **102**, 105001 (2009).

[99] R. Ruffini, G. Vereshchagin, S.S. Xue, Phys. Rep. 487, 1 (2010).

[100] I.C.E. Turcu, F. Negoita, D.A. Jaroszynski, P. Mckenna, S. Balascuta, D. Ursescu, I. Dancus, M.O. Cernaianu, M.V. Tataru, P. Ghenuche, D. Stutman, A. Boianu, M. Risca, M. Toma, C. Petcu, G. Acbas, S.R. Yoffe, A. Noble, B. Ersfeld, E. Brunetti, R. Capdessus, C. Murphy, C.P. Ridgers, D. Neely, S.P.D. Mangles, R.J. Gray, A.G.R. Thomas, J.G. Kirk, A. Ilderton, M. Marklund, D.F. Gordon, B. Hafizi, D. Kaganovich, J.P. Palastro, E. D'Humieres, M. Zepf, G. Sarri, H. Gies, F. Karbstein, J. Schreiber, G.G. Paulus, B. Dromey, C. Harvey, A. Di Piazza, C.H. Keitel, M.C. Kaluza, S. Gales and N.V. Zamfir, Rom. Rep. Phys. 68, S145 (2016).
[101] J.E. Clendenin, *Proceedings of the 1989 IEEE Particle Accelerator Conference, Accelerator Science and Technology* 2, 1107 (1989).

[102] T. Omori, T.Takahashi, S. Riemann, W. Gai, J. Gao, S.I. Kawada, W. Liu, N. Okuda, G. Pei, J. Urakawa and A. Ushakov, Nucl. Instrum. Method Phys. Res. A **672**, 52 (2012).

[103] E.P. Liang, S.C. Wilks and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998).

[104] C. Gahn, G. D. Tsakiris, G. Pretzler, K. J. Witte, C. Delfin, C.-G. Wahlström and D. Habs, Appl. Phys. Lett. 77, 2662 (2000).

[105] H. Chen, S.C. Wilks, D.D. Meyerhofer, J. Bonlie, C.D. Chen, S. N. Chen, C. Courtois, L. Elberson, G. Gregori, W. Kruer, O. Landoas, J. Mithen, J. Myatt, C.D. Murphy, P. Nilson, D. Price, M. Schneider, R. Shepherd, C. Stoeckl, M. Tabak, R. Tommasini and P. Beiersdorfer, Phys. Rev. Lett. **105**, 015003 (2010).

[106] G. Sarri, W. Schumaker, A. Di Piazza, M. Vargas, B. Dromey, M. E. Dieckmann, V. Chvykov, A. Maksimchuk, V. Yanovsky, Z. H. He, B. X. Hou, J. A. Nees, A. G. R. Thomas, C. H. Keitel, M. Zepf and K. Krushelnick, Phys. Rev. Lett. 110, 255002 (2013).

[107] G. Sarri, K. Poder, J.M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira & M. Zepf, Nat. Commun. 6, 6747 (2015).

[108] H. Chen, J.C. Sheppard, D.D. Meyerhofer, A. Hazi, A. Link, S. Anderson, H.A. Baldis, R. Fedosejev, J. Gronberg, N. Izumi, S. Kerr, E. Marley, J. Park, R. Tommasini, S. Wilks and G. J. Williams, Phys. Plasmas **20**, 013111 (2013).

Fig. 1. Production of $e^- - e^+$ pair, described by plane waves with momenta $p_-, -p_+$. Tree-level diagrams with weak photon fields. Bare-fermion propagator labelled by iS_F . (a) Breit-Wheeler process with photons (k_1, ε_1) and (k_2, ε_2) . (b) Bethe-Heitler process with photon (k, ε) and nucleus Z(-e). Time-axis points upwards.

Fig. 2. (a) Experimental arrangement for pair production using laser (k), X-ray (k_x) and Coulomb charges [Z(-e)]. Laser beam propagates along the z-axis with electric field polarized along the y-axis (vertical). Figure-8 orbit of leptons in the laser field lies in the plane of the paper. (b) Leptons described by actions S_{-}, S_{+} . External (thick) lines in (b) depict Coulombcorrected Volkov states (Furry representation [2]). X-ray field is assumed weak.

Fig. 3. (a) Yield (pairs per laser shot) versus nuclear charge Z for 10 PW laser and X-ray photons with normalized energy $\kappa = 0.925, 0.95, 0.98$, with other parameters listed in Table I. (b) Yield versus nuclear charge Z for 1 EW laser and X-ray photons with normalized energy $\kappa = 0.6, 0.75, 0.925$. In (a) and (b) strict convergence is maintained on the solid line segments only. (c) Momentum distribution of $e^- - e^+$ for 10 PW case, $\kappa = 0.98$ and Z = 18. The laser beam propagates along the z-axis with electric field polarized along the y- axis. Leptons are ejected in opposite directions along the y- axis and $\delta p_y \equiv p_-^2 + p_+^2$ measures the *difference* between their y-momenta [Eq. (2) in Supplemental Material [80]). Distribution in $p_y - p_z$ -plane, given by Eq. (4), is symmetric about $p_y = 0$ with vertex on p_z -axis given by Eq. (3).

Laser wavelength	800 nm
Laser spot radius	2.5 µm
Laser pulse duration	35 fs
X-ray photon density	$5 \times 10^{17} \text{ cm}^{-3}$
X-ray pulse duration	$4Z_{RL} / c = 327 \text{ fs}$
Coulomb charge density	10^{20} cm^{-3}

Table I. Parameters for determination of $e^- - e^+$ yield for 10 PW and for 1 EW lasers.