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We analyzed an 6.7-year span of data from a rotating torsion-pendulum containing ≈ 1023

polarized electrons to search for the “wind” arising from ultralight, axionlike dark matter with
masses between 10−23 and 10−18 eV/c2. Over much of this range we set a 95% confidence limit
Fa/Ce > 2 × 1015 eV on the axionlike decay constant.
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A wide variety of astrophysical observations provide
compelling indirect evidence for the existence of cold
dark matter[1]. Direct efforts to detect this dark mat-
ter typically assume that it consists of heavy, fermionic,
supersymmetry-inspired particles called WIMPS, or else
low-mass bosons called axions that would solve the strong
CP problem. Despite much effort, large-scale detectors
have not found evidence for supersymmetry[2] nor for
dark-matter WIMPS[3]. This has focused attention on
low-mass bosonic dark matter, where sensitive instru-
ments are now probing the expected coupling-strength
and mass of the Peccei-Quinn axion[4].

Recent work[5, 6] has emphasized that bosons with
masses anywhere between 10−22 and 100 eV/c2 could
be produced in the early universe with the properties
required of the cold dark matter. If the bosons have
masses below 1 eV/c2 and comprise a significant frac-
tion of the observed dark matter density ρDM, their num-
ber density must be so high that they behave as coher-
ent waves rather than as particles. If the bosons are
bound in our galaxy, they must be highly non-relativistic
(va/c ≈ 10−3), and the bosonic waves would have a fre-
quency

fa = Ea/h =
mac

2

h
[1 + (va/c)

2/2], (1)

corresponding to a central frequency fa = Ea/h =
mac

2/h with a fractional spread δfa/fa = (va/c)
2/2 ≈

10−6, and a de Broglie wavelength

λa = h/(mava) . (2)

Astrophysical observations may favor the very longest
wavelength dark-matter candidates[7–9]: conventional
cold-dark-matter simulations predict density cusps at
the centers of galaxies and a substantial abundance of
low-mass dwarf galaxies, both of which disagree with
observations[10]. An ultralight boson (UB) with ma ≈
10−22 eV/c2 would have λa ≈ 1.2 × 1019 m or 400 par-
secs. In this case, the uncertainty principle (which states
that the UB distribution cannot be localized to better
than λa) could solve both of the above-mentioned prob-
lems with cold-dark-matter simulations, making this tiny
mass an important target for experimental work.

Laboratory probes of axionic or axionlike dark-matter
fall into three broad classes: coupling to highly sensi-
tive electromagnetic circuits[4], oscillating atomic[11] or
neutron[12] electric-dipole or parity-violating moments,
and “wind”[12] effects. The “wind” from the laboratory’s
motion with respect to the axion wave acts on an electron
like an oscillating “magnetic field”[5, 6, 13, 14] with

Heff = Ce
ã0

2Fa
sin(2πfat+ φa)

(va · σe)

c
, (3)

where the dimensionless factor Ce characterizes the axion
coupling to electrons and σe is the orientation of the
electron spin. Fa, fa, and φa are the symmetry-breaking
scale, oscillation frequency, and phase of the axionlike
wave, respectively. If the local energy-density of dark
matter (0.45 GeV/cm3[4]) consists entirely of axionlike
UBs, then ã0 =

√
2ρDM(h̄c)3 ≈ 2.6 × 10−3 eV2, a value

we assume throughout this work.

Although the UBs and the solar system are gravita-
tionally bound in the galaxy and originally had simi-
lar velocities this will not be the case today. The tra-
ditional isothermal isotropic equilibrium halo model[15]
predicts that dissipation and angular momentum con-
servation (the “ballerina effect”) combined to give the
present-day solar system a circular velocity v� which is
an order of magnitude larger than that of the dark mat-
ter. In this equilibrium model va ≈ v�. However, this
simple model ignores the possibility that recent mergers
between the Milky Way and its satellite galaxies have
not fully equilibrated, leaving debris streams with large
velocities. Recent analyses of Gaia-2 data[16–18] sug-
gest that 10-50% of the dark matter in our galaxy is in
such streams. If the solar system is currently in a debris
stream, va could point in any direction with a magnitude
less than the local escape velocity.

Motivatfed by these considerations, we searched for the
frequency-dependent signatures of an axion wind in Eöt-
Wash rotating torsion-balance data previously taken with
a pendulum containing Ne ≈ 9.8 × 1022 polarized elec-
trons. This remarkable pendulum[19] (shown in Fig. 1)
was formed from closed magnetic circuits containing two
different permanent magnetic materials with high (Al-
nico) and low (Sm Co5) spin densities at the same internal
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FIG. 1. (color online) Spin pendulum. The light green and
darker blue volumes are Alnico and Sm Co5, respectively. Up-
per left: top view of a single magnetized “puck”; its spin
moment points to the right. Lower right: the assembled
pendulum with its magnetic shield shown cut-away to reveal
the 4 pucks inside. Two of the 4 mirrors (light gold) used
to monitor the pendulum twist are prominent. Arrows with
filled heads show the relative densities and directions of the
electron spins, open-headed arrows show the directions of B.
The pucks are arranged so that the spin dipole is centered
on the pendulum, and the different materials have a vanish-
ing composition-dipole moment. The 8 tabs on the shield
held small screws that were used to tune out the pendulum’s
residual q21 gravitational moment. The 103 g pendulum had
a rotational inertia of 169 g cm2.

magnetizations. The resulting device had a negligible ex-
ternal magnetic field but carried both net spin S, orbital
angular momentum L and a total angular momentum
J = −S. The net spin dipole was calibrated using the
Coriolis force from the earth’s rotation on the electron-
spin “quantum gyroscope”. The device was sufficiently
sensitive to yield an upper limit of ≈ 2×10−22 eV on the
energy required to invert an electron spin about a direc-
tion fixed in inertial space; this is equal to the electro-
static energy of 2 electrons separated by 48 astronomical
units. However that analysis, which searched for a pre-
ferred frame, would have averaged away the time-varying
signal of Eq. 3.

Here we analyze a larger data set (taken for Refs. [19–
21]) that spanned 2438 days in 241 subsets. During
each subset the experimental conditions (for example the
turntable rotation rate, the angle of the spin dipole in
the turntable frame[19–21] and the positions of external
sources[20, 21]) remained constant. The subsets had du-
rations between 0.8 and 10 days. Our data consisted
of 15588 individual measurements. Each measurement
typically contained exactly 2 full turntable revolutions
and lasted for ∼ 2800 s, a duration long compared to the
pendulum’s free-oscillation period of ≈ 200 s. Following
Ref. [19], we assumed that during an individual measure-
ment the pendulum’s energy as a function of turntable

FIG. 2. βN and βW values from all 241 subsets. The different
subsets have varying noise levels which are reflected in the
assigned uncertainties (not shown).

angle φtt was

E(φtt) = −Neσ · β = −Neβ cosφ (4)

where Ne is the number of polarized electrons in the pen-
dulum, σ is the direction of the spin dipole, β is a vector
assumed to be approximately fixed in the lab during an
individual measurement, and φ = φtt − φ0 was the in-
stantaneous angle between the rotating spin dipole and
β. Therefore the pendulum experienced a torque

T (φtt) = −∂E/∂φ = Ne(βW cosφtt − βN sinφtt) (5)

that was inferred by correcting the measured pendulum
twist angle in the rotating frame for pendulum inertia
plus electronic and digital time constants. Each mea-
surement yielded independent determinations of βN and
βW, where N and W are local North and West direc-
tions. Measurement uncertainties in each data subset
were deduced from the scatter of the points in that sub-
set. We suppressed lab-fixed signals (arising from the
Coriolis force as well as from many other less interesting
effects) by setting to zero the average βN and βW values
in each of the 241 subsets. Figure 2 displays the βN and
βW values of our measurements.

We searched our βN and βW values for signals from
axions with va in an arbitrary direction in the equa-
torial (X,Y) plane. (Signals for va along Z were not
considered here as they have no sidereal modulation
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and are more difficult to distinguish from mundane lab-
fixed effects[22].) We made evenly-spaced scans over
67,200 values of fa. At each fa we computed 8 ba-
sis states: biXN cos, biXW cos, biXN sin, biXW sin, plus cor-
responding states for va along Y. Here, for example,
biXNcos = Ki

XNη
i cosωti where Ki

XN transforms trans-
forms equatorial (X,Y) to local (N,W) coordinates and
varies at the sidereal frequency; ηi = sin(ωτ i/2)/(ωτ i/2)
accounts for the attenuation of fa by the finite length of
the measurements: ti and τ i are the mean time and du-
ration of the ith measurement, and ω = 2πfa. We zeroed
the average values of the 8 basis states in each of the 241
subsets as well. This procedure ensured that the effects
of zeroing the mean values of the β data subsets, the
varying lengths and uncertainties of the subsets, as well
as the gaps between the subsets were handled correctly.
Our constraints for axion velocities along X were derived
from a linear fit that yielded quadrature amplitudes aXcos

and aXsin

β i
N = aXcos b

i
XNcos + aXsin b

i
XNsin

β i
W = aXcos b

i
XWcos + aXsin b

i
XWsin , (6)

with similar expressions for aYcos and aYsin.

We first analyzed the frequency range of our highest
sensitivity (1 × 10−8 ≤ fa ≤ 1 × 10−4 Hz); here the
maximum fa was small compared to the inverse dura-
tions of the measurements so that the basis states were
not appreciably attenuated. For each fa, we determined
4 quadrature amplitudes and their uncertainties. Re-
sults are shown in Figure 3. All 4 quadrature ampli-
tudes are characterized by Gaussians with zero mean and
σ = 0.154 zeV. The distributions of the quadrature am-
plitudes divided by their uncertainties are also zero-mean
Gaussians but with σ = 1.0, We marginalised over the
uninteresting phase φa by computing radial amplitudes
aX =

√
|aXcos|2 + |aXsin|2 and aY =

√
|aYcos|2 + |aYsin|2.

As expected, aX and aY are well modeled by the Rayleigh
distribution whose only free parameter is the Gaussian σ.

Figure 4 shows the spectral distribution of aX. The
small bump centered at fa ≈ 11.6 µHz occurs when fa

and the sidereal frequency coincide. In that case our pro-
cedure of zeroing the average values of the basis states
reduced their mean magnitudes by a factor

√
2. This

automatically increased the fitted amplitudes (and their
uncertainties) by the same factor. A careful examination
revealed that the central values in the bump region ex-
ceed the expected increase by an additional 40%, which
accounts for the observation that 5.2%, rather than 5.0%,
of the points in Fig. 4 lie above the lower blue curve. We
checked that the excess on the bump was not an arti-
fact of our analysis using a simulation where we kept
the actual uncertainties and times of our β data, but re-
placed the central values of the βs with values normally-
distributed around 0 by the actual uncertainties. The

FIG. 3. (color online) Upper 2 panels: histograms of aXcos
and aXsin coefficients for 10−8 ≤ fa ≤ 10−4 Hz. Results for
aYcos and aYsin are very similar. All 4 quadrature amplitudes
are characterized by zero-mean Gaussians with σ = 0.154 zeV.
Lower panel: histogram of corresponding aX amplitudes. The
results follow the expected Rayleigh distribution, the 95%-
confidence upper-limit on aX (as well as on aY) is 0.38 zeV.

simulated data showed no additional excess, and we con-
clude that the excess arose from a subtle systematic with
a characteristic period of about 1 day. Binning the data
as function of time of data did reveal a systematic effect:
the scatter of the points in night-time data was less than
that of the day-time data, but correcting for this had no
significant effect on the results.

Satisfied that the statistical properties of aX and aY

were well described by the Rayleigh distribution, we
widened our scan to cover frequencies between 10−9 Hz
and 3.2 × 10−4 Hz. Now the frequency interval in our
67,200 point scan nearly equaled the inverse of the 2438-
day span our our data and the high-frequency signals
were appreciably attenuated by the finite durations of
the measurements. Our Ce/Fa constraints from this scan
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FIG. 4. (color online) Spectral distribution of aX. The lighter
(orange) jagged line shows the fit amplitudes. The 2 smooth
lines show the sensitivities of the analysis. The lower (blue)
smooth curve shows the 95% C.L. Rayleigh uncertainties in
the individual fit amplitudes while the upper red curve con-
tains a trials penalty. Absent a signal, the Rayleigh distri-
bution predicts that 5% of the amplitudes will lie above the
lower curve and that there is a 5% probability that a sin-
gle amplitude anywhere in our frequency range will lie above
the upper curve; as expected no amplitude exceeds the up-
per curve. The darker (blue) jagged line shows the result of
adding to our βN and βW data a synthetic 1µHz Xcos sig-
nal with an amplitude of 2.5 zeV. The extracted amplitude,
2.498± 0.144 zeV, is resolved at 17σ. Small satellite peaks in
the synthetic signal arise from gaps in our time-series data.

on axion velocities lying in an arbitrary direction in the
XY plane are shown in Fig. 5. We assume that |va| =
240km/s ≈ |v�|[23], this is approximately the virial ve-
locity and roughly half the local escape velocity[24]. We
neglected the earth’s orbital velocity as it is an order of
magnitude smaller than |v�|. Our constraints based on
the simple equilibrium halo model, where va is the XY
component of v�, are shown in Fig. 5 as well.

This analysis probes axionlike dark-matter coupled to
electrons over 5 of the 22 decades of possible masses for
coherent axionlike dark-matter[5]. Were it of sufficient
interest, one could re-fit the raw pendulum-twist data
with combined turntable, dark-matter and sidereal basis-
functions, extending constraints up to the pendulum’s
free-oscillation frequency of ≈ 5 mHz and cover an addi-
tional decade of mass range.

Our results exclude ultralight galactic-halo axions with
Fa/Ce

<∼ 2 PeV, significantly above the axion scales
Fa/Ce

<∼70 TeV probed by experiments that rely on
both sourcing and detecting axions, such as fifth-force
searches[21, 26] and light-shining-through-walls tests[27].
Axions in this parameter space would require a mecha-
nism that suppresses their production inside stars, such
as a chameleonic self-interaction[28], since astrophysical
considerations disfavor axions with Fa/Ce

<∼ 1 EeV as
they would provide a channel for excessive cooling[29].
It is interesting that an EeV-scale axion would slightly

FIG. 5. (color online) 95%-confidence constraints on Ce/Fa.
The color coding of the lines is identical to that in Fig. 4.
The structure near ma = 47 zeV is the sidereal bump and
the smooth increase at the highest masses reflects the signal
attenuation due to finite measurement durations. The jagged
black line shows the 95% C.L. upper limit as a function of
ma computed from the Rice distribution[25] (the generaliza-
tion of the conventional mean+2σ appropriate for quadra-
ture amplitudes). For clarity, we averaged Rice95 points with
ma > 2 zeV. See Supplemental Material at [URL will be in-
serted by publisher] for the unaveraged values. Absent a sig-
nal, the Rayleigh distribution predicts that 5% of the unaver-
aged amplitudes (orange) should lie above the 2.45σ line (in
fact for the top, middle and bottom panels 4.8%, 5.2% and
5.2% do); and that there is only a 5% chance that a single
unaveraged amplitude anywhere the distribution should lie
above the 5.32σ line (in fact none do). The dashed line shows
Cn/Fa constraints from an axion-wind analysis[12] of neutron
electric-dipole data. The black horizontal line shoes the con-
straint from a spin-spin force experiment[26]. The shaded
green region is disfavored by stellar cooling[29].

improve the consistency between cooling models and ob-
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servations for some well-studied astrophysical systems
[30, 31].

We expect that by replacing the tungsten torsion fibers
used in this work with ones made from fused silica, and
employing advanced twist-angle readout and turntable
control, the constraints reported here could be improved
by up to a factor 100. An additional factor of 10 would be
needed to probe beyond the coupling strengths disfavored
by astrophysics. We thank J. Detwiler, V. Flambaum, L.
Hui, M. Lisanti, Y. Stadnik and T. Quinn for helpful
conversations. Ted Cook constructed the spin penulum
and Claire Cramer took some of our data. This work
was supported in part by National Science Foundation
Grants PHY-1305726 and PHY-1607391.
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