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We develop an extension of the variational quantum eigensolver (VQE) algorithm multistate,
contracted VQE (MC-VQE) that allows for the efficient computation of the transition energies
between the ground state and several low-lying excited states of a molecule, as well as the oscillator
strengths associated with these transitions. We numerically simulate MC-VQE by computing the
absorption spectrum of an ab initio exciton model of an 18-chromophore light-harvesting complex
from purple photosynthetic bacteria.
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The accurate modeling of the many-body interactions
in the ground and excited-state solutions of the electronic
Schrödinger equation is a prerequisite for the quantita-
tive prediction of molecular physical phenomena such as
light harvesting. Using classical computers, this problem
scales formally as the factorial of the number of involved
electrons [1], via the solution of the full configuration
interaction (FCI) equations, though many polynomial-
scaling approximations such as density functional theory
[2–5] (DFT), coupled cluster theory [6–9] (CC), density
matrix renormalization group [10, 11] (DMRG), adap-
tive and/or stochastic configuration interation methods
[12–18] (CIPSI and variants), and semistochastic coupled
cluster methods [19, 20], have been developed to combat
this problem. Recently, there has been a surge of inter-
est in using quantum computers to naturally solve the
many-body electronic structure problem through meth-
ods such as the iterative phase estimation algorithm [21–
26] (IPEA) or the variational quantum eigensolver [27–
32] (VQE), However, the quartic-scaling complexity in
number of molecular orbitals of the second-quantized
electronic Hamiltonian, coupled with the overhead of
encoding the fermionic antisymmetry of the electrons
through the Jordan-Wigner [33, 34] (JW), Bravyi-Kitaev
[35, 36] (KB), or superfast Bravyi-Kitaev [37, 38] (SFKB)
transformations, implies that rather long circuit depths
will be required to directly model the electronic structure
problem. We also point out a recent approach [39–41]
that might formally reduce this complexity to quadratic
or linear via a tensor hypercontraction representation
[42–44] of the potential. In the present work, we ex-
plore a domain- and problem-specific means to reduce the
complexity of the representation of the electronic struc-
ture problem in quantum computing: an ab initio exci-
ton model [45–49]. For large-scale photoactive complexes
consisting of a number of nonbonded chromophore units,
the ab initio exciton model compresses the details of the
electronic structure on each chromophore into a hand-
ful of monomer electronic states. The determination of

the full configuration interaction wavefunctions describ-
ing the mixing of monomer electronic states in the full
complex remains a formidable task - here we show that
this might be a natural computational task for a near-
term quantum computer.

Another area that deserves exploration is the devel-
opment of efficient quantum algorithms for the even-
handed treatment of ground- and excited-state energies
and transition properties, e.g., for the computation of
absorption spectra. There exist IPEA-type algorithms
for excited states, such as the WAVES protocol [50] or
the variational swap test [51], but we focus on VQE-type
methods here. Most existing VQE-type quantum algo-
rithms are “state specific,” meaning that they optimize
the VQE parameters for one state at a time. Exam-
ples include the folded spectrum (FS) method [27], which
requires the observation of the square of the Hamilto-
nian, or the orthogonality-constrained VQE (OC-VQE)
method [52, 53] which applies a penalty term to re-
move contaminants from lower-lying states. Another,
more-global approach is the quantum subspace expansion
(QSE-VQE) [54, 55], which first performs VQE to deter-
mine the ground state, and then determines the excited
states by classical diagonalization in a basis of response
states. QSE-VQE treats all the excited states on a simi-
lar footing, but by construction favors the ground state,
and requires the determination of three- and four-particle
density matrices through high-order Pauli measurements.

MC-VQE - Inspired by the mixed quantum/classical
strategy of QSE-VQE (particularly the final classical di-
agonalization step), we have developed a new multistate,
contracted variant of VQE (MC-VQE), which aims to
(1) treat the ground and a handful of excited states on
the same footing (2) minimize the size of the classical
subspace that must be diagonalized and (3) provide for
the straightforward computation of transition properties
such as oscillator strengths. MC-VQE takes the following
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ansatz for a number (NΘ) of eigenstates of interest,

|ΨΘ〉 ≡ Û
∑
Θ′

|ΦΘ′〉VΘ′Θ. (1)

Here |ΦΘ〉 are a set of contracted, orthonormal “refer-
ence” states, which are obtained by solving a classical
electronic structure problem such as configuration inter-
action singles (CIS). By contracted, we mean that these
reference states are generally taken to be a linear combi-
nation of Hilbert-space configurations - ideally this will
allow the reference states to be reasonably accurate ap-
proximations to the exact eigenstates. As will be seen,
all that we will require is that we have an efficient quan-
tum circuit to prepare the “diagonal” state |ΦΘ〉 and the
“interfering” state (|ΦΘ〉± |ΦΘ′〉)/

√
2. For CIS reference

states, this is possible - see the Supplemental Material
for a detailed circuit [56] which generalizes a previously
known circuit for |WN 〉 states [57].

The operator Û({η}) is the VQE entangler matrix, an
orthogonal Hilbert-space matrix constructed from a set
of two-qubit entangling operators whose set of parame-
ters {η} will be chosen to maximally decouple {|ΦΘ′〉}
from the rest of the Hilbert space, i.e., to approximately
block diagonalize the Hamiltonian. The matrix VΘ′Θ is
an NΘ ×NΘ orthogonal matrix that describes the rota-
tion of the entangled contracted states {|χΘ′〉 ≡ Û |ΦΘ′〉}
to the approximate eigenbasis {|ΨΘ〉}. This matrix can
be determined by classical diagonalization of the entan-
gled contracted Hamiltonian,

HΘ′′Θ′VΘ′Θ = VΘ′′ΘEΘ : VΘ′ΘVΘ′Θ′′ = δΘΘ′′ . (2)

The eigenvalues EΘ are the Ritz approximations to the
exact eigenvalues. The entangled contracted Hamilto-
nian is,

HΘΘ′ ≡ 〈ΦΘ|Û†ĤÛ |ΦΘ′〉. (3)

The diagonal matrix elements can be evaluated by partial
tomography measurements in a quantum computer, as is
done in standard VQE:

HΘΘ = 〈ΦΘ|Û†ĤÛ |ΦΘ〉. (4)

The (real) off-diagonal matrix elements can also be ob-
tained from observable quantities:

2HΘ6=Θ′ = (〈ΦΘ|+ 〈ΦΘ′ |) Û†ĤÛ (|ΦΘ〉+ |ΦΘ′〉) /2

− (〈ΦΘ| − 〈ΦΘ′ |) Û†ĤÛ (|ΦΘ〉 − |ΦΘ′〉) /2. (5)

This highlights the need for quantum circuits to prepare
the “interfering” state (|ΦΘ〉 ± |ΦΘ′〉)/

√
2.

The parameters of the MC-VQE entanglement circuit
should be chosen to maximally decouple the full set of ap-
proximate eigenstates {|ΨΘ〉} from the rest of the Hilbert

space. This can be accomplished in a 2-norm sense in the
Hamiltonian by optimizing the parameters of the VQE
entangler operator to minimize the state-averaged en-
ergy,

Ē =
1

NΘ

∑
Θ

EΘ =
1

NΘ

∑
Θ

HΘΘ. (6)

The second equality follows from the definition of the
trace, and shows that the minimization of the state-
averaged energy is equivalent to the minimization of the
sum of diagonal contracted Hamiltonian matrix elements.

FIG. 1: Example MC-VQE quantum circuit for N = 4 linear
exciton model. The first stage prepares contracted CIS refer-
ence states |ΦΘ〉 [or interference variations (|ΦΘ〉±|ΦΘ′〉)/

√
2

thereof] specified by rotation angles in the Ry and Fy gates.

The second stage applies the many-body VQE entangler Û
specified through a polynomial number of rotation angles 2-
body U2 entangler gates. 1- and 2-body Pauli measurements
of this circuit then determine the entangled contracted Hamil-
tonian matrix elements HΘΘ′ .

Overall the MC-VQE algorithm has four stages:

1. Classically solve CIS or some other polynomial-
scaling electronic structure problem to “sketch out”
the shapes of the relevant states by determining the
contracted reference states {|ΦΘ〉}.

2. Vary the parameters of the VQE entangler oper-
ator to optimize the state-averaged energy Ē =
(1/NΘ)

∑
ΘHΘΘ.

3. For the converged VQE entangler operator, observe
the reference-state Hamiltonian HΘΘ′ using sums
and differences of Hamiltonian expectations of in-
terference states.

4. Classically diagonalize HΘΘ′ to obtain the Ritz es-
timates of the eigenstates and eigenvalues.

A schematic of the quantum circuit needed to prepare
a CIS state |ΦΘ〉 and apply the VQE entangler Û is
shown in Figure 1 - the 2-body SO(4) entanglers, e.g.,
ÛAB

2 are constructed from known 6-parameter circuit el-
ements [58–61] - full details of this circuit are available in
the Supplemental Material [56]. Overall, the MC-VQE
approach has a number of unique features relative to es-
tablished excited-state VQE approaches such as quantum
subspace expansion (QSE-VQE) [54]:
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• The VQE entangler Û is optimized in a state-
averaged manner, providing a balanced treatment
of ground and excited states, i.e., all states are com-
puted to approximately equal accuracy.

• The optimization of the VQE entangler Û requires
only the measurement of NΘ diagonal matrix el-
ements HΘΘ. The determination of the N2

Θ off-
diagonal matrix elements HΘ6=Θ′ can be done sep-
arately, after the VQE entangler parameters have
been optimized.

• Higher-order density matrices are not required.

Note that the eigenstates can be reexpressed as |ΨΘ〉 ≡
Û |ΓΘ〉 where {|ΓΘ〉 ≡

∑
Θ′ |ΦΘ′〉VΘ′Θ} are rotated refer-

ence states. The algorithm above is quite general - we
present a demonstration below for the case of the ab ini-
tio exciton model, but it is clear that this approach might
be immediately applicable to the efficient computation of
excited states in fermionic electronic structure computa-
tions. Transition properties (such as the transition dipole
moment, needed for computing the absorption spectrum)
can also be computed by substituting the desired opera-
tor Ô in place of Ĥ in Equation 5.

It is worth noting that MC-VQE can be roughly pic-
tured either as a generator of the wavefunction ansatz of
Equation 1 or as a means to observe the elements of the
unitarily-transformed effective Hamiltonian of Equation
4, wherein the VQE entangler operator Û acts as a wave
operator [62, 63].

Ab Initio Exciton Model - Consider a set of N chro-
mophoric monomers, each labeled by index A, which are
arranged in a particular nuclear geometry in a photoac-
tive complex. In isolation, the chromophores are usually
characterized by a constant number of photoactive elec-
tronic states, regardless of the number of electrons in the
monomer (often between two and four states are photoac-
tive in the visible spectrum in the monomer: the ground
and the first few singlet excited states). If the monomers
are sufficiently far apart in the full photoactive complex
(e.g., if they are at noncovalent separations due to em-
bedding in a protein scaffold), the strict considerations
of fermionic antisymmetry can be relaxed without loss
of accuracy, and the full complex electronic eigenstates
can be computed as a configuration interaction of direct
products of monomer states. I.e., for electronic state Θ
in a system where each chomophoric monomer is char-
acterized by the ground state |0A〉 and the first excited
state |1A〉 (a restriction we make from here onward to fa-
cilitate ease of mapping to qubits), the electronic states
are,

|ΨΘ〉 =
∑

p0,q1...∈[0,1]

CΘ
p0q1...rN−1

|p0〉 ⊗ |q1〉 ⊗ . . .⊗ |rN−1〉.

(7)

Typically, we wish to find these adiabatic electronic
states, e.g., to determine the energy gaps and oscilla-
tor strengths in the system as a proxy for the electronic
absorption spectrum. Formally, this requires diagonal-
ization of the exciton Hamiltonian, which can straight-
forwardly be written in Pauli matrix notation for the
special case considered here of a photoactive system with
two electronic states per monomer,

Ĥ = E +H(1) +H(2) = E Î +
∑
A

ZAẐA + XAX̂A (8)

+
∑
A>B

XXABX̂A ⊗ X̂B + XZABX̂A ⊗ ẐB

+ZXABẐA ⊗ X̂B + ZZABẐA ⊗ ẐB .

The choice of Hamiltonian matrix elements
{ZA,XA,ZZAB ,ZXAB ,XZAB ,XXAB} for a given
photoactive complex is an interesting art. Choosing
these parameters empirically to match experiment or
other reference data is the crux of the phenomonological
Frenkel-Davydov exciton model [64, 65]. Recently, we
introduced a new ab initio exciton model approach
[45–49], in which the parameters of the exciton model
are determined explicitly by high-level ab initio compu-
tations on the isolated monomers, under the assumption
of sufficient monomer separations to relax the fermionic
antisymmetry constraint. We have extended the
ab initio exciton model to treat full non-adiabatic
dynamics through the development of analytical gra-
dients/coupling vectors [46, 47] and have increased
the basis set to include both local and charge-transfer
excitations [47].

In this ab initio exciton model the Hamiltonian matrix
elements in Equation 8 all have distinct physical origins:
E is the mean-field energy, ZA is roughly (half) of the dif-
ference between the ground and excited state energy of
monomer A, XXAB is the transition-dipole–transition-
dipole interaction and ZZAB is the difference-dipole–
difference-dipole interaction between monomers A andB,
and XZAB and ZXAB are transition-dipole–difference-
dipole interaction cross terms. ZA and XA carry Fock-
matrix like dressings from the mean-field electrostatic en-
vironment of the system. A full definition of the matrix
elements is available in the Supplemental Material [56].

Diagonalizing this Hamiltonian to obtain the eigen-
states {|ΨΘ〉}, even for a model of this simplicity, is dif-
ficult classically due to the 2N dimension of the Hilbert
space |p0〉⊗|q1〉⊗. . .⊗|rN−1〉. To highlight this, we point
out that this part of the problem is usually solved classi-
cally in a highly restricted Hilbert space where only single
excitations are allowed [45–47]: for many energy-transfer
applications this may be reasonable, but will be incapable
of describing the conical intersection between the ground
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and lowest-excited states [66]. However, it is apparent
that the ab initio exciton Hamiltonian is entirely isomor-
phic to an extended spin-lattice Hamiltonian. There-
fore, existing technologies for the quantum simulation
of spin-lattice Hamiltonians should provide utility for
this problem. Below, we demonstrate the potential for
this mapping by simulating the quantum computation of
the absorption spectrum of a large photoactive complex
using MC-VQE. Note that we are not the first to pro-
pose a crossover between exciton models for photoactive
complexes and spin-lattice models in qubits: there have
been myriad prior studies using phenomenological exci-
ton models to theoretically characterize [67–69] or physi-
cally simulate [70–73] the exciton energy transfer (EET)
process in open systems such as the Fenna-Matthews-
Olsen (FMO) complex. However, the emphasis in the
prior literature has been on the modeling of the disap-
pative non-adiabatic dynamics of EET through coupling
with the protein/solvent environment in an effective way
(via effective phonon coupling approaches such as the
Holstein model). In our approach, we emphasize the ac-
curate ab initio computation of the electronic absorption
spectrum at a given nuclear configuration, as a prerequi-
site for direct non-adiabatic dynamics simulations.

Demonstration - MC-VQE circuits were implemented
in our in-house quantum simulator package, Quasar.
All aspects of state preparation, VQE entanglement, and
casting of transition matrix elements as difference ob-
servables were performed in the simulator, though 1- and
2-body Pauli expectation values were evaluated through
contractions of wavefunction amplitudes (equivalent to
infinite averaging of discrete Pauli measurements), and
noise/error channels were not modeled. CIS is solved
classically in the basis of the reference and all singly-
excited configurations. We avoid the “barren plateaus”
issue of locating optimized VQE parameters [74] by find-
ing a tightly converged and near-global-optimal solution
for the 108 MC-VQE parameters which is directly down-
hill from a zero-entanglement guess in 14 L-BFGS itera-
tions, using finite-difference gradients [56].

For a practical test case, an ab initio exciton model
was constructed for the N = 18 cyclical LH2 B850 ring
complex of the purple photosynthetic bacteria - the spe-
cific geometry is provided in the Supplemental Mate-
rial [56]. Monomer Hamiltonian matrix elements were
computed in the GPU-accelerated TeraChem program
[75–77] for classical electronic structure theory, using
TDA-TD-DFT [4] at ωPBE(ω = 0.3)/6-31G* [78, 79].
Dimer Hamiltonian matrix elements were approximated
by the dipole/transition-dipole model. Dimer Hamil-
tonian matrix elements were truncated after cyclical
nearest-neighbor contacts due to the r−3

AB decay of the
interactions. Figure 2 depicts the simulated absorp-
tion spectrum of this ab initio exciton model computed
from the excitation energies and oscillator strengths of
the lowest 18 electronic transitions with MC-VQE and

FIG. 2: (color online). Top - Simulated absorption spectrum
of N = 18 cyclical LH2 B850 ring complex (geometry depicted
in inset), computed from the excitation energies and oscilla-
tor strengths of the lowest 18 electronic transitions, depicted
as vertical sticks. The envelope of the absorption spectrum is
sketched by broadening the contribution from each transition
with a Lorentzian with width of δ = 0.05 eV. The simulated
MC-VQE and reference FCI results are visually indistinguish-
able. Middle - errors in excitation energies. Bottom - errors
in oscillator strengths. Middle and bottom - thin lines are a
guide for the eye.

CIS, and compared to the “full configuration interaction”
(FCI) reference computed in the space of all possible 2N

monomer excitation configurations. The CIS absorption
shows a noticeable blue shift of a few hundredths of an eV
relative to FCI, and, more noticeably, the CIS oscillator
strengths may deviate by 10% or more, particularly for
the brightest states. By contrast, MC-VQE with a sin-
gle entangler layer is visually indistinguishable from FCI -
the maximum deviations of excitation energies are on the
order of tens of µeV, while the oscillator strengths gen-
erally deviate by� 1%. At the request of a reviewer, we
have also considered a test case where CIS produces qual-
itatively incorrect results relative to FCI: an N = 8 linear
stack of BChl-a chromophores. MC-VQE has no trouble
with this system, and again produces results which are
essentially visually indistinguishable from FCI: see the
Supplemental Material for full details [56].

Outlook - In this Letter, we have demonstrated a
hybrid quantum/classical approach for the modeling of
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electronic absorption spectra in large-scale photoactive
complexes by using a multistate, contracted variant of
VQE (MC-VQE) in the context of an ab initio exciton
model. We simulated MC-VQE for an N = 18 LH2 B850
complex (a Hilbert space dimension of 218 = 262144).
The MC-VQE absorption spectrum matches FCI quan-
titatively with only a single layer of VQE two-body en-
tanglers with a connectivity matching that of the exciton
Hamiltonian. With a qubit count equivalent to the num-
ber of monomers N , a circuit depth that is linear in N , a
gate count that is quadratic in N , and a requirement of
only 1- and a sparse set of 2-body Pauli measurements,
MC-VQE applied to an ab initio exciton model with lo-
cal Hamiltonian connectivity is a compelling application
for deployment to near-term quantum hardware.

This Letter is intended to sketch the salient features of
the MC-VQE algorithm and its potential application to
the ab initio exciton model. Future work will investigate
robustness of the algorithm on realistic hardware includ-
ing the influence of gate/measurement errors. Ab initio
exciton Hamiltonians with more-complicated local con-
nectivity that are unlikely to be addressable with classi-
cal methods such as DMRG should also be investigated.
Beyond this, effort should be devoted to direct imple-
mentation on real hardware, where circuit locality and
simplification/sparsification will be of key importance.
Finally, MC-VQE should be explored in the context of
direct simulation of fermionic electronic structure prob-
lems - it seems highly likely that this algorithm will be
easily adaptable to the study of multiple excited states in
many types of Hamiltonians beyond the ab initio exciton
model.

Note added during revision: After the first revision
of our paper was released, we learned of the “subspace
search” VQE (SS-VQE) approach developed by Nakan-
ishi, Mitarai, and Fujii in a recent preprint [80]. Both
SS-VQE and MC-VQE use a state-averaged VQE en-
tangler Û , and both describe how to compute transition
properties. The methods have several key differences:
SS-VQE uses hybrid quantum-classical optimization to
determine the minimal and maximal eigenvectors in the
subspace matrix, while MC-VQE uses classical diago-
nalization of the subspace Hamiltonian to determine all
subspace eigenstates simultaneously. Additionally, MC-
VQE uses contracted reference states (e.g., from CIS)
while SS-VQE uses Hilbert-space configurations.
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