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Obtaining an accurate ground state wave function is one of the great challenges in the quan-
tum many-body problem. In this paper, we propose a new class of wave functions, neural network
backflow (NNB). The backflow approach, pioneered originally by Feynman [1], adds correlation to
a mean-field ground state by transforming the single-particle orbitals in a configuration-dependent
way. NNB uses a feed-forward neural network to learn the optimal transformation via variational
Monte Carlo. NNB directly dresses a mean-field state, can be systematically improved and directly
alters the sign structure of the wave-function. It generalizes the standard backflow[2] which we show
how to explicitly represent as a NNB. We benchmark the NNB on Hubbard models at intermedi-
ate doping finding that it significantly decreases the relative error, restores the symmetry of both
observables and single-particle orbitals, and decreases the double-occupancy density. Finally, we
illustrate interesting patterns in the weights and bias of the optimized neural network.

Introduction.—A key question in strongly correlated
quantum systems is to obtain an approximation for the
ground state wave function. This is especially impor-
tant for Fermion systems in two or more dimensions
where only approximate or exponentially costly meth-
ods for evaluating observables of quantum systems ex-
ist. Early attempts for writing down variational Fermion
wave-functions, such as Slater determinants [3] and BCS
wave-functions[4], focused on finding the ground state of
a mean field Hamiltonian which best matched the inter-
acting ground state. Since these early attempts more
sophisticated wave-functions have been developed which
dress these mean-field starting points including Slater-
Jastrow [5, 6], Slater-Jastrow-Backflow [1, 7] and itera-
tive backflow [8] which has recently been described as a
non-linear network [9]. These wave-functions have the
advantage that the mean-field starting point can directly
incorporate the basic physics of the problem.

Instead of starting from a dressed mean-field, many
other classes of wave-functions are parameterized by a
tuning parameter D which interpolates from a trivial
state at small D to a universal wave-function span-
ning the entire Hilbert space at exponential D. Ex-
amples of such wave-functions include matrix-product
states[10, 11], other forms of tensor networks[11–13],
Huse-Elser states[14–16], and string-bond states [17]. Re-
cently, wave-functions based on neural network primi-
tives, such as restricted Boltzmann machines (RBM) and
feed forward neural network(FNN), have been introduced
with similar universal properties[18–42]: as the number
of hidden neurons increases, the neural network state can
represent all probability distribution although may re-
quire complex weights to represent the sign structure of
Fermion wave-functions. A recent attempt to incorpo-
rate RBM into Fermion states by using the RBM as a
more general Jastrow [23] shows promise but was still
restricted to the sign-structure of the underlying mean-
field ansatz. Even though general neural networks could

alter the sign-structure, it may struggle with capturing
the underlying mean-field physics both in terms of the
number of neurons required as well as optimization.
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Figure 1. Cartoon of (spin-up) neural network being used in
this work for aNN (other transformations are similar) with
input shown for the configuration displayed of 4 electrons
on 3 sites. Every layer is fully connected with arrows but
only a fraction of them are shown for image clarity. The in-
put layer is set by the configuration. Parameters bj and wij
are bias and weights to be optimized. The output layer is a
nup-electrons×nsites (i.e 2×3) matrix which will be the backflow
transformation added to the single particle orbitals.

In this work, we propose a new class of wave-functions,
the Neural Network Backflow (NNB), which dresses a
mean-field wave-function, can make changes to the sign
structure directly, and can be systematically improved by
increasing the number of hidden neurons and is able to
be made theoretically exact in the limit of enough neu-
rons. To accomplish this we use a feed-forward neural
network (FNN), not in the standard approach of return-
ing a wave-function amplitude, but instead to transform
the single particle orbitals in a configuration dependent
way; these orbitals are then used in the mean-field wave-
function. Wave-functions with configuration-dependent
orbitals are known as a backflow wave-function[1, 2, 7–
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9, 43–55].
Background.—Mean field theory - approximating the

ground state of a quartic Hamiltonian by the ground
state, ψMF , of a quadratic Hamiltonian - is a powerful
first step to understanding correlated quantum systems.
Various mean fields lead to different types of ground
states including Slater determinants,

ψSD(r) = det
[
MSD,↑]det

[
MSD,↓]; (1)

MSD,σ
ik =φkσ(riσ) (2)

and Bogoliubov de Gennes wave-functions,

ψBDG(r) = det[Φ] (3)

Φij =

N∑
k,l=1

φk↑(ri,↑) Skl φl↓(rj,↓) (4)

where φkσ is the k’th single particle orbital and ri,σ is
the position of the i’th particle of spin σ. Eq. (1) only
takes the occupied orbitals while Eq. (3) is summed over
both occupied and unoccupied orbitals.

Mean field states are uncorrelated by construc-
tion. The simplest way to capture correlation physics
is through the introduction of a Jastrow giving
ψJastrow(r) = exp[−U(r)]ψMF (r), where U(r) is an ar-
bitrary function. In this work, we always use a charge
Jastrow U(r) = 1

2

∑
i,j vijninj , where ni is the charge

density, vij is the variational parameters. While Jastrow
factors can introduce many-body correlations, they can’t
modify the mean-field’s sign structure. One approach
to add additional sign-structure modifying correlation
is through a backflow correction [2, 7–9, 43–55] which
introduces correlations by having the single-particle or-
bitals act on a configuration-dependent quasi-particle po-
sition. On the lattice, the backflow approach instead
uses a configuration-dependent mean-field [2, 44, 45, 47]
- i.e. the quadratic Hamiltonian or single-particle orbitals
φbk,σ(ri; r) depend not only on the position ri but on all
other electron positions r; our NNB builds on top of this
formulation of backflow.

Neural Network Backflow.—The NNB uses a FNN to
modify the single particle orbitals for a spin σ,

φbkσ(ri,σ; r) = φkσ(ri,σ) + aNNki,σ(r) (5)

where each value of aNNij,σ is represented by an output
neuron of the FNN. We use one neural net for each of
σ ∈ {↑, ↓}. This is to be contrasted with the standard
backflow[44] parameterization,

φbkσ(ri,σ; r) = φkσ +
∑
j

ηij,σφkσ(rj,σ)

ηij,σ = tDiHjθ|i−j|,σ (6)

with Di = ni,↑ni,↓, Hi = (1 − ni,↑)(1 − ni,↓). θ1,σ and
θ2,σ are the only non-zero variational parameters.

Interestingly, the backflow transformation of Eq. (6),
can be represented as a neural network for aNNij,σ (r) with
three hidden layers and a linear number of neurons; an
explicit construction will be given in the next section.
This ensures that there exists a three layer neural net-
work which is at least as good as the standard backflow
transformation.
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Figure 2. Top Left: Percentage relative error from the exact
ground-state energy of Eq. 7 (E = −11.868[56]) on 4×4 Hub-
bard model at U/t=8, n=0.875, for various classes of wave-
functions. The star is the variance extrapolation result of
ΨPN (see Supplementary Material [57] Sec. I). Top Right:
Percentage relative energy error ,(Eexact-ENNB)/Eexact*100
%, as a function of 1/m for NNB. Statistical error bars are
shown but smaller than the marker size. Bottom: Variance
extrapolated energy per site for Hubbard model with U/t=8,
n=0.875 with system size L× 4 for L = 4, 8, 12, 16. The dash
line is the DMRG energy per site (−0.7659 ± 4 × 10−5) for
system size ∞× 4 (PBC, open) [58].

We consider two NNB wave-functions, ΨSN and ΨPN ,
implemented on top of a Slater Determinant and BCS
pairing wave-functions respectively. The neural nets used
in these wave-functions are similar although ΨSN has
outputs which only correspond to the occupied orbitals,
while the outputs of ΨPN correspond to all the orbitals.
In addition, for ΨSN there are only two neural nets (one
for each of the spin-up and spin-down orbitals) while for
ΨPN there is an additional neural net used to generate a
system dependent Skl(r). This is implemented by letting
Skl(r) = Skl + dNNkl (r), where dNNkl (r) is represented by
an FNN (in this work always fixed to 16 hidden neurons)
that inputs the system configuration r and outputs the
symmetric matrix correction dNNkl . Notice that ΨPN is
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method backflow transformation mean field variational functions
ψS0 NA. Eq. (1) φk↑(ri,↑),φk↓(ri,↓),vij
ΨSN φbkσ(ri,σ; r) = φkσ(ri,σ) + aNNki,σ(r) Eq. (1) aNNki,σ(r),vij
ΨPB φbkσ(ri,σ; r) = φkσ(ri,σ) + θ1σ

∑
j tDiHjφkσ(rj,σ) + θ2σ

∑
j tDiHjφkσ(rj,σ) Eq. (3) θ1σ,θ2σ,Skl,vij

ΨPN φbkσ(ri,σ; r) = φkσ(ri,σ) + aNNki,σ(r); Skl(r) = Skl + dNNkl (r) Eq. (3) aNNki,σ(r),dNNkl (r),vij

TABLE I. Wave Function Ansatzs

trivially a superset of ΨSN .

Although various architectures can be used, we adopt a
three-layer fully-connected FNN for each of the functions
aNNki,σ and dNNkl (see Fig. 1). The input layer has 2N neu-
rons with neuron i (neuron i + N) outputting 1 if there
is spin up (spin down) on site i and -1 otherwise, where
N is the total system size. The hidden layer contains
mN hidden neurons for constant m with Rectifier Lin-
ear Units (ReLU) [59] activation functions. The output
layer then contains O(N2) neurons specifying the val-
ues of the respective functions. Gradients are computed
in the standard way using variational Monte Carlo (see
Supplementary Material [57] Sec. II) which requires eval-
uating the derivative of the wave-function with respect
to the weights and bias in the neural network. Deriva-
tives for FNN are typically taken using back-propagation.
Because the wave-function is a determinant of a matrix
generated by the neural-network output, we evaluate this
full derivative by envisioning this determinant as an ad-
ditional final layer of the neural network and then per-
forming back-propagation including this layer. This en-
sures the cost of computing all the derivatives is of the
same order as the evaluation of the wave-function (see
Supplementary Material [57] Sec. III). Optimization is
performed by stepping each parameter in the direction
of the gradient with a random magnitude, which helps
us avoid shallow local minima [60], or by the RMSPROP
method [61].
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Figure 3. Charge Density (Top) and Spin Density (Bottom)
from ΨPN with 8 hidden neurons (left) and 128 hidden neu-
rons (right) on 4× 4 Hubbard model at U/t=8, n=0.875.

The computational complexity of the NNB imple-
mented with a single layer of O(mN) hidden neurons

scales as O(mN4) per sweep (i.e. after N electrons move)
for forward and backward propagation and O(N4) per
sweep for the evaluation of the mean-field determinant.
This is similar to the scaling of standard backflow.

Explicit construction of standard backflow.—In this
section, we provide an explicit construction which repre-
sents the standard backflow transformation in the form
of Eq. (6) written as a NNB.

In Eq. (6), ηij,σ = tDiHjθ|i−j|,σ =
tni,↑ni,↓hj,↑hj,↓θ|i−j|,σ, where hj,σ = 1 − nj,σ, θ1,σ
and θ2,σ are the only non-zero variational parame-
ters. We first demonstrate that ηij,σ can be presented
by a two layer neural network with input layer as
(σ1, ..., σN , σN+1, ..., σ2N ) where σi = 2ni,↑ − 1 and
σi+N = 2ni,↓ − 1. By construction, ni,σ and hj,σ
take value of 0 or 1 so that ni,↑ni,↓hj,↑hj,↓ is 1 if and
only if ni,↑ = ni,↓ = hj,↑ = hj,↓ = 1. Therefore,
tθ|i−j|,σDiHj = tθ|i−j|,σni,↑ni,↓hj,↑hj,↓ is equiva-
lent to ReLU[tθ|i−j|,σ(ni,↑ + ni,↓ + hj,↑ + hj,↓ − 3)],
which is the same as ReLU[tθ|i−j|,σ(σi/2 + σi+N/2 −
σj/2 − σj+N/2 − 1)]. As a result, for each ηij,σ,
we associate it with a hidden neuron, such that
the weights connecting it to σi, σi+N , σj , σj+N are
tθ|i−j|,σ/2, tθ|i−j|,σ/2,−tθ|i−j|,σ/2,−tθ|i−j|,σ/2 re-
spectively, the bias is −tθ|i−j|,σ and the activation
function is ReLU. In general, for more complicated
backflow [2, 45, 47] with terms ni,σhi,−σnj,−σhj,σ,
ni,σni,−σnj,−σhj,σ and ni,σhi,−σhj,σhj,−σ, where σ is
the spin index, we can use more hidden neurons and
represent it in the same way.

After we have the neural network construction for
the standard ηij,σ, the term aNNki =

∑
j ηij,σφkσ(rj,σ)

in Eq. (5) can be realized through an extra layer tak-
ing the outputs ηij,σ to a neuron representing aki where
the weight is given by the single particle orbital values
φkσ(rj,σ), there is no bias and the activation function is
the identity. This construction shows that the standard
backflow parameterization is thus a subset of our three-
layer NNB.

Results.—We have benchmarked the quality of our
NNB on a number of systems including Hubbard models
at various sizes and doping (all at U/t = 8) as well as a
frustrated magnet, the Heisenberg model on the Kagome
lattice. In the main text we focus primarily on the Hub-
bard model at n = 0.875 (primarily on the 4× 4 lattice)
leaving the additional benchmarks as Supplementary Ma-
terial [57] Sec. IV., [62–64]) The Hubbard Hamiltonian
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is

H = −t
∑
iσ

(c†iσci+1σ + h.c.) +
∑
i

Uni↑ni↓ (7)

where we use U/t = 8. We compare the results to an op-
timized unrestricted (i.e. different single particle-orbitals
for spin-up and spin-down) Slater Determinant (ΨS0) as
well as a backflow BDG wave function (ΨPB) which trans-
forms single particle orbitals of each spin by Eq. (6). The
formulation and the variational parameters of each wave
function ansatz are summarized in Table. I. The param-
eters which aren’t optimized, such as the initial set of
orbitals {φkσ(ri,σ)} are obtained for ΨPB and ΨSN by op-
timizing a restricted Slater-Jastrow wave-function while
ΨPN uses orbitals taken from the free hopping Hamilto-
nian (in practice the nature of the neural net allows for a
direct change to the orbitals by altering the bias’ on the
final layer).

The relative error of the energy of NNB is 1.4% (and
0.66% after variance extrapolation (see Supplementary
Material [57] Sec. I) which is significantly better then
the standard wave-functions (see Fig. 2(left)). We ex-
amine the effect of the number of hidden neurons mN
(see Fig. 2(right)). We find that at small hidden neu-
ron number, ΨPN is much better than ΨSN but this
advantage eventually largely disappears at large neuron
number suggesting that a backflow parameterized with
a small neural networks can compensate for the miss-
ing pairing in a Slater-determinant. Surprisingly in the
regime we’ve probed both NNB have energies linear with
respect to 1/m in spite of the fact that in the m → ∞
limit, they both must become exact as the FNN could
simply put the exact amplitude Ψ(R) on one element of
the diagonal [65], one on the rest of the diagonal and zero
everywhere else.
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Figure 4. Spin-up (top) and spin-down (bottom) single par-
ticle orbital(s.p.o) for ΨS0 (left) and ΨSN (right) with 256
hidden neurons on 4× 4 Hubbard model at U/t=8, n=0.875,
where the s.p.o are evaluated at the (1d-reshaped) spin-
configuration shown. For the s.p.o, row is orbital index and
the column is position index.

In addition, we have studied the NNB at 4 × L for
L = {4, 8, 12, 16} comparing against the DMRG energy

(PBC,open) for the 4×∞ system of −0.7659± 4× 10−5

per site [58]. We find our result very comparable (see
Fig. 2 (bottom)) to the DMRG result, especially for sys-
tem sizes which are commensurate with wave-length 8
stripes[58].

We also investigate how the neural network backflow
wave function affects the observables of our system. We
see the expectation of double occupancy decreases as 1/m
(see Supplementary Material [57] Sec. I) and the spin and
charge densities become significantly more symmetric as
the number of hidden neurons increases (see Fig. 3).

To understand the role of neural network in backflow
transformation, we investigate how the neural network
backflow transformation modify the orbitals. In Fig. 4
(right), we notice although the backflow transformation
on spin up orbitals and spin down orbitals are performed
by two different neural networks, they produce similar
backflow transformed orbitals and roughly preserves the
symmetry of spin up and spin down for a given configu-
ration. This is different from the optimized unrestricted
Slater Determinant ΨS0, which breaks the spin up and
spin down symmetry significantly (see Fig. 4 (Left)).

One feature of using a NNB is the ability to alter the
sign-structure of the wave-function. Here we consider the
amount the sign changes between ΨSN with 16 hidden
neurons and ΨS0 by evaluating the integral∫

|ΨS0(x)|2sgn(ΨSN(x))sgn(ΨS0(x))dx∫
|ΨS0(x)|2dx (8)

which is approximately 0.815 giving a 9% difference be-
tween the signs.

Furthermore, we open up the ΨSN neural network for
m = 8 and analyze the weight between the input layer
and the hidden layer, which represents the features that
the neural network learns from input. In Fig. 5, we plot
these weights for both the spin-up and spin-down neural
networks. Interestingly the spin-up neural network pri-
marily has large weights connected to the spin-down con-
figurations while the spin-down neural network primar-
ily has large weights connected to the spin-up configura-
tions. This allows the neural network to introduce cor-
relation between spin-up and spin-down configurations.
Another observation is that more neurons tend to take
large weight in negative bias, and small weight in positive
bias.

Conclusion.—In this paper, we utilize the generality of
artificial neural networks and the physical insight from
backflow to develop a new class of wave function ansatz,
the neural network backflow wave function, for strongly
correlated Fermion systems on lattice. It achieves good
performance for Hubbard model at nontrivial filling. We
also show improvement on a kagome Heisenberg model in
the supplement. While this work has focused on Fermion
system on the lattice, the NNB is straightforward to gen-
eralize to frustrated spin systems as well as the contin-
uum. In the latter case, the input could be represented as
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a lexicographically ordered set of particle locations. Our
work provides a new approach toward combining machine
learning methodology with dressed mean-field variational
wave-functions which allows us to take simultaneous ad-
vantage of their respective strengths.
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Figure 5. Weights between the input layer and hidden layer
for ΨSN with 256 hidden neurons for the spin-up (left) and
spin-down (right) neural networks on 4 × 4 Hubbard model
at U/t=8, n=0.875. Hidden neurons are ordered by their
bias and shown are neurons 1-32 (top), 96-128 (middle) and
224-256 (bottom).
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