
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Kepler Orbits in Pairs of Disks Settling in a Viscous Fluid
Rahul Chajwa, Narayanan Menon, and Sriram Ramaswamy

Phys. Rev. Lett. 122, 224501 — Published  4 June 2019
DOI: 10.1103/PhysRevLett.122.224501

http://dx.doi.org/10.1103/PhysRevLett.122.224501


Kepler orbits in pairs of disks settling in a viscous fluid

Rahul Chajwa1, Narayanan Menon2, Sriram Ramaswamy3,4

1International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560 089
2Department of Physics, University of Massachusetts, Amherst MA 01003 USA

3Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560 012
4TIFR Centre for Interdisciplinary Sciences, Hyderabad 500 107

We show experimentally that a pair of discs settling at negligible Reynolds number (∼ 10−4) dis-
plays two classes of bound periodic orbits, each with transitions to scattering states. We account for
these dynamics, at leading far-field order, through an effective Hamiltonian in which gravitational
driving endows orientation with the properties of momentum. This treatment is successfully com-
pared against the measured properties of orbits and critical parameters of transitions between types
of orbits. We demonstrate a precise correspondence with the Kepler problem of planetary motion
for a wide range of initial conditions, find and account for a family of orbits with no Keplerian
analog, and highlight the role of orientation as momentum in the many-disc problem.

Collective gravitational settling in a viscous fluid is a
notoriously challenging problem in the physics of driven
systems with long-range interactions. In the Stokesian
limit of Reynolds number Re → 0 sedimenting particles,
which are monopoles of force density, manifest the hy-
drodynamic interaction [1–4] in its strongest form [5, 6].
Among the consequences of this strong coupling are chaos
in three-particle settling [7, 8], and the resulting statis-
tical character of many-particle sedimentation [6, 9–11].
Interestingly, however, the collective settling of identical
spheres can be built up from two-particle processes [13–
15]. A pair falls faster than an isolated sphere, with a
horizontal drift when their separation is oblique to grav-
ity, but a constant separation vector thanks to the re-
versibility of Stokes flow [2]. By the same token a single
apolar axisymmetric particle falls without rotating, drift-
ing horizontally at a rate proportional to its constant tilt.
However, for two sedimenting discs a rich phase-space
dynamics emerges, via mutual rotation due to a coupling
between orientational and translational degrees of free-
dom [16–19].

In this Letter, we present experiments that classify the
possible dynamical behaviours of a settling pair of discs.
We show that a symmetry-based far-field theory, without
a detailed calculation of the mutual rotation coupling,
accounts for the dynamics through the emergence of an
effective Hamiltonian for this wholly dissipative system.
Horizontal position and tilt in the presence of gravity
thus precisely mimic coordinate and momentum, with an
inherited time-reversal invariance. This emergent canon-
ical dynamics persists in the many-disc problem, where it
competes with the well-known velocity-fluctuations prob-
lem [6, 11, 12, 20, 21] in the sedimentation of isotropic
particles.

Our experiments are conducted on pairs of identical
discs, falling in viscous fluid (Re ∼ 10−4) in a quasi-
two-dimensional container with dimensions of 30 cm x
50 cm x 5 cm (Width x Height x Depth). The fluid
was transparent polydimethylsiloxane (silicone oil) of vis-
cosity 60000 cSt and density 0.96 g cm−3. The discs,

of radius a = 0.6 cm, and 1 mm thickness, are made
of aluminium (density 2.7 g cm−3), sanded smooth and
spray-painted black. Their settling dynamics are cap-
tured every 5 second with a NikonD700 DLSR camera.
The images were converted to 8-bit, and thresholded af-
ter subtracting the background. Tracking was done by
fitting an ellipse to the discs, with the centroid of the el-
lipse giving the positions (xi, yi) with an error of ± 0.02 a
and orientation of the major axis giving θi of the discs
with an error of ± 0.06◦.

As shown in Figure 1 the trajectories of the centres of
the discs lie in a plane. Assuming translation symmetry
in the x− y plane, and taking advantage of the observa-
tion that there are no rotations due to torques about the
x- and y-axes, the six coupled degrees of freedom can be
reduced to two separation and two orientation degrees of
freedom. Our observations suggest two qualitatively dis-
tinct trajectory types: scattering, in which the separation
increases monotonically, and bound, in which separation
and orientations oscillate with a characteristic amplitude
and wavelength. The oscillatory behaviour further falls
into two classes, to be discussed later.

We ask: (i) Is there a well-defined boundary in the
space of initial conditions that separates periodic and
scattering (i.e. infinite-wavelength) behaviour, or do our
“scattering” states simply have a wavelength longer than
the container height? (ii) What determines the emergent
time period and wavelength of the periodic orbits?

Within the four-dimensional space of initial separa-
tions and orientations it is convenient to work with
x ≡ x2− x1, y ≡ y2− y1, θ− ≡ θ2− θ1 and θ+ ≡ θ1 + θ2.
Here θi is measured with respect to y-axis, defined to be
−ve in first and fourth quadrant and +ve is second and
third quadrant [Fig. 1]. We begin with the symmetric
case with initial θ1 = −θ2 and y = 0. The resulting tra-
jectories [Fig. 2(a)] are symmetric, i.e. θ+ = 0 at all
times. For small initial value xo of the horizontal sep-
aration x, the θi undergo full rotations and x oscillates
periodically, as observed in experiments and simulations
by Jung et al. [17]. As xo is increased the wavelength and
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FIG. 1. Bound and scattering behaviour: (a) Quasi-two-
dimensional setup, prepared with disc normal and separation
vector ~R = ~R2− ~R1 in plane of settling geometry, (x, y). Disc
orientation angles θ1 and θ2 measured w.r.t gravity pointing
along the ŷ direction. (b) Time-lapse showing observed pair
dynamics generated by varying initial inter-disc separation
(xo, yo) and orientations θ1, θ2. Trajectories fall into two
broad classes: periodic bound (1-3) and scattering (4-6).

amplitude of the oscillations increase sharply [Fig. 2(d)],
until the terminal motion seems to approach the linear
trajectories of isolated Stokesian discs [see Supplemental
Material (SM) [22] , Video 1]. Finite container height
makes it impossible to establish experimentally the exis-
tence of a threshold value of xo at which the wavelength
and amplitude actually diverge. A similar limitation ap-
plies to the numerical evidence for scattering orbits [23]
using an expansion in a/R and the method of reflections
[2, 3].

Working at leading order in a/R, we construct an effec-
tive Hamiltonian approach to the disc-settling problem
and map the symmetric case to the gravitational Kepler
problem, thus establishing the transition between peri-
odic and scattering orbits. We then go on to explain the
behaviors seen in asymmetric settling. We begin with

an isolated settling disc: the horizontal velocity of an
isolated settling disc is ẋ1 = Fα sin 2θ1, where F is its
buoyant weight and the mobility α is defined below. The
tilt angle θ1 remains constant. We can thus view the triv-
ial evolution of x1 and θ1 as the Hamiltonian dynamics
of a free particle with momentum θ1 and kinetic energy
proportional to cos 2θ1. This approach also applies to the
two-disc case, where θ1, θ2 do not remain constant.

For symmetric settling, retaining the lowest non-
vanishing contribution in an expansion (see SM [22],

Text) in a/x, ẋ = 2Fα sin θ− and ˙θ− = 2Fγ/x2. The
proportionality constants α and γ are determined by the
solution for an isolated settling spheroid [24]. The mobil-
ity α = −(XA

−1 − YA−1)/12πµa and γ = 1/8πµ, where
the resistance functions XA = 8/3π and YA = 16/9π
[3] in the limiting case of e =

√
1− b2/a2 → 1 for

radius a and thickness b of the disc. The above far-
field equations can be recast as Hamiltonian dynamics
ẋ = ∂θ−H, ˙θ− = −∂xH with

H ≡ 4Fα sin2 θ
−

2
+ 2Fγ/x (1)

where 4Fα sin2 θ−

2 and 2Fγ/x play the roles of kinetic
and potential energy respectively, but the 1/x comes from
the viscous hydrodynamic kernel, not gravity. This is
precisely the reduced Hamiltonian for the Kepler problem
[25] when expressed in terms of azimuthal angle θ− and
radial coordinate x [Fig. 2 (b)]. The solution

1

x
− 1

xo
=
α

γ
(cos θ− − cos θ−o ) (2)

to the equations of motion, obtained earlier by Kim [23]
for far-field scattering trajectories, is simply conservation
of H, describing both bound and scattering orbits [see
Fig. 2(c)], with a transition as xo → xc = 4a/π. Note
that the observed amplitude diverges at xc = 1.02a which
is smaller than 4a/π [see Fig. 2 d]. A circular Kepler
orbit arises only for α = 0, which is the case of a pair of
identical spheres. Given the very close approach of the
discs in a bound state, the far-field mapping to the Kepler
problem bears up surprisingly well against experimental
observations, as detailed in Fig. 2.

A simple case of asymmetric initial conditions consists
of releasing the discs at the same height with their normal
vectors perpendicular to each other, θ+ = π/2 [Figure 3
a-c]. Once again, periodic dynamics in the orientation
is observed, with the added complexity of y oscillating
between positive and negative values, and an apparent
transition to unbounded orbits with increasing xo.

The effective Hamiltonian description above provides
a useful framework for understanding the dynamics re-
sulting from a more general set of initial conditions
(xo, yo, θ

+, θ−o). A reduction to an effective two-
dimensional dynamics can be achieved for asymmetric
initial conditions θ+o 6= 0 as well, and periodic behaviour
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FIG. 2. Symmetric settling: (a) Experimental time-lapse images showing transition from periodic to scattering trajectories
with increasing xo. Wavelength λ and amplitude A appear to diverge as xo approaches a critical value. (b) Elliptical Kepler
orbits for the bound states are clearly seen when the measured x and θ− are displayed as radial and azimuthal coordinates
respectively. (c) Trajectories in x - θi plane, i = 1, 2, showing regions of bound and scattering trajectories. The grey curves are
predicted by the far-field analysis: 1/x = 1/xo + π

8a
(cos 2θi − cos 2θio), where θio, xo are the initial values. Red, blue and green

represent restricted, bound and scattering regions respectively. (d) Amplitude vs minimum separation fits 1/(x−1
o −x−1

c )+c with
xc = 1.02a and c = 0.725a (red curve), qualitatively consistent with the asymptotic far-field prediction (blue) 1/(x−1

o − π/4a).
(e) Scaling of period T with amplitude A, T ∼ Aν , with ν ' 1.59± 0.11 consistent with the 3/2 of Kepler’s third Law.

is preserved but more complex [Figs. 3 and 4]. The re-
sulting non-Keplerian behaviour can be understood by
extending equation 1 to incorporate the dependence of
the angular velocity of the discs on the angle between the
separation vector R and the external force F. To leading
order in a/R, the angular velocities of discs are equal and
opposite, θ̇1 = −θ̇2 = γF×R/R3. With this additional
ingredient, we get the general equations of motion

ẋ = 2Fα sin θ− cos θ+, ẏ = −2Fα sin θ− sin θ+ (3)

˙θ− = 2Fγ
x

R3
, ˙θ+ = 0. (4)

Here α and γ are same as before (1). The form (3) and
(4) also follows on general grounds of symmetry [see SM
[22], text]. The conservation of θ+ in (4) constrains the
dynamics of x and y to a line with slope − tan θ+, re-
ducing the number of variables reduces to two, thus al-
lowing phase plane analysis. The dynamics in terms of
S ≡ |R − Ro| and θ− [see SM [22], text] is given by

Ṡ = ∂θ−H, ˙θ− = −∂SH, with effective Hamiltonian

H ≡ 4Fα sin2 θ
−

2
+ 2F

γ̄(S)

R(S)
(5)

where γ̄(S) ≡ γ (yo − S sin θ+) / (yo cos θ+ + xo sin θ+)
and R(S) = (S2 + Ro

2 + 2Sxo cos θ+ + 2Syo sin θ+)1/2.
Note that, in the limit θ+ → 0, Kepler orbits are realised
for more general initial separations with yo 6= 0.

The Hamiltonian (5) for θ+ = π/2 implies a dynamics
with y oscillating between positive and negative values

given by y = ±xo cos θ−/

√
(8a/πxo)

2 − cos2 θ−, con-
stant x, and, with increasing xo, a transition from peri-
odic to unbound orbits at xc = 8a/π [see SM [22], text].
These are in accord with observations [see Figure 3 and
SM [22], Video 2], though the experiments additionally
show small oscillations in x possibly arising from near-
field effects and small imprecision in initial release angles.

For both symmetric and perpendicular initial condi-
tions, the time period diverges at the boundary be-
tween bound and scattering orbits. Assuming disc thick-
ness � radius, we have two length scales in the prob-
lem: the radius a of the disc and the separation R
between the particles. One expects the period T =
(a2µ/F )f(R/a,Re ,Fr , θ+o, θ

−
o), where the scaling func-

tion f depends on the initial conditions, as well as on the
Reynolds number Re = ρUa/µ ' 10−4 and Froude num-
ber Fr = U/

√
ga ' 10−3 both of which are negligibly

small. f(Ro/a) can be calculated for symmetric and per-
pendicular cases [see SM [22], text] in the far-field limit,
whence we find that the wavelength λ ∼ TF/aµ diverges
more strongly (∼ A3) for the perpendicular case than for
the symmetric case (∼ A3/2 Kepler’s 3rd Law), a trend
consistent with our observations (see Figure 3d).

Rocking – a qualitatively distinct periodic behaviour
analogous to libration in a pendulum, in which θ− oscil-
lates in a limited range – emerges for π/2 < θ+ < π [see
SM [22], Video 3]. Releasing the discs with θ1 = π/2 and
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FIG. 3. Perpendicular initial condition: (a) Experimen-
tal time-lapse images, when the discs are released with per-
pendicular initial orientation. xo is increased from left to right
leading to a divergence in vertical separation y. (b) Experi-
mental trajectories in the θ−-y plane represented by points,
compared with the far field result plotted in grey solid lines:

y = ±xo cos θ−/
√

(8a/πxo)
2 − cos2 θ−. Blue and green in

the phase diagram represent bound and scattering regions re-
spectively as predicted by far-field analysis. (c) Divergence
of amplitude of y oscillations captured by plotting maximum
value of y/a as function of xo/a. Solid curve is far-field predic-

tion of amplitude: A(xo) = xo/
√

(8a/πxo)
2 − 1, with the red

dotted line representing the critical xo = 8a/π. (d) Observed
wavelength λ/a increases more strongly as function of ampli-
tude A/a for perpendicular (blue) as compared to symmetric
case (red).

decreasing −θ2 from π/2 (symmetric case) towards zero
we experimentally capture the tumbling-rocking transi-
tion at θ−o = −π/2 [see Figure 4 (a) and (b)]. Unlike in
tumbling, in rocking orbits the sign of x and hence, from
(4), of ˙θ−, alternates as the particles interchange their
relative horizontal positions. Except for the special cases
of parallel and perpendicular release, rocking dynamics is
best viewed in x, y and θ− space albeit with proportional
x and y displacements. Figure 4(c) shows the trajecto-
ries projected on the x-θ− plane. The tumbling-rocking
transition can once again be understood in terms of the
effective Hamiltonian (5) [see SM [22], text]. The exten-
sion to the case of dissimilar discs is also discussed in the
SM [22].

The two-particle processes discussed above can be used
as a building block to study the coupling of positions and
orientations in multiple discs settling in our geometry [see
Fig.1], within the far-field description [10, 14, 20]. Let
(xm, ym) be the position of the mth particle. At each

location rm, define ~U(rm) ≡
∑N
n 6=m FGxy(rm − rn)x̂ +

FGyy(rm − rn)ŷ + Fαŷ, where Gij is the Oseen tensor
[2, 3] and m,n are particle labels. Pairwise addition of
forces and torques at position rm due to particles at other

locations rn gives the coupled dynamics of the mth disc:

ẋm = Fα sin 2θm + Ux, ẏm = Fα cos 2θm + Uy (6)

and

˙θm = −Fγ
2

∂

∂xm

N∑
n 6=m

1√
(xm − xn)2 + (ym − yn)2

. (7)

From (6) & (7) we can show (R Chajwa et al., unpub-
lished) that the dynamics in the (x, θ) space can be
viewed as an effective Hamiltonian dynamics riding on
the y-averaged background flow, ẋm = ∂θmHX+Ux(xm),
θ̇m = −∂xm

HX where the effective Hamiltonian takes the
form

HX ≡
N∑
m=1

Fα sin2 θm −
N∑

n6=m

Fγ

∫
L(xm − xn)dxm (8)

where the expressions for L and Ux can be obtained from
the steady-state average of (6) and (7) over the y coordi-
nates. Ux contains the giant velocity fluctuations of [21]
and possible screening mechanisms à la ref. [6, 11, 12, 20]
and the “potential energy” term containing γ in (8) in-
corporates the tilt-induced lateral drift [10].

Our experiments have uncovered a rich dynamics in the
zero-Reynolds-number settling of a pair of identical discs,
with a well-defined boundary between bound and scatter-
ing orbits and two distinct classes of periodic bound-state

FIG. 4. Tumbling to rocking transition: (a) As θ−o de-
creases tumbling gives way to rocking. Trajectory of disc
on right (red) exchanges relative x position with that on left
(blue) except for the first trajectory where −θ−o > π/2. (b)
Maximum angle of disc on right is plotted as function of −θ−o ,
and rocking-tumbling transition observed at θ−o = −π/2 (dot-
ted red line), consistent with far-field calculation. (c) Trajec-
tories plotted in x− θ− plane; red symbols represents rocking
motion and blue represents tumbling. The corresponding red
and blue solid curves represent the far-field prediction of rock-
ing and tumbling dynamics respectively [see SM [22], text].
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motion. Despite limited accuracy in locating the bound-
scattering boundary, and excluding extreme situations
where a disc is in the hydrodynamic shadow of another
[see SM [22], Video 4], the far-field hydrodynamic inter-
action offers a satisfactory and detailed understanding of
the dynamics, even close to particle contact. It should be
clear that our analysis is applicable to any uniaxial shape
with fore-aft symmetry along the symmetry axis. Unex-
pectedly, the conservative dynamics generated by an ef-
fective Hamiltonian governs this viscosity-dominated sys-
tem, with the tilt of the discs playing the role of momen-
tum. For a large family of initial conditions the problem
maps precisely to that of Kepler orbits. We find and
account for a distinct family of orbits with no planetary-
orbit analogue, where the angle executes oscillations over
a limited range. For the many-disc problem, a y-averaged
treatment yields Hamiltonian dynamics for (x, θ) as con-
jugate variables, riding on a background carrying the ve-
locity fluctuations of sedimenting spheres [6, 11, 12, 20].
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[9] É. Guazzelli & J. Hinch, Fluctuations and Instability
in Sedimentation, Annu. Rev. Fluid Mech. 43, 96–116
(2011).

[10] T. Goldfriend et al., Screening, Hyperuniformity, and In-
stability in the Sedimentation of Irregular Objects, Phys.
Rev. Lett. 118, 158005-1-6 (2017).

[11] K.V. Kumar, PhD thesis, Indian Instt. of Science (2010).
[12] D.L. Koch & E.S.G. Shaqfeh, Screening in sedimenting

suspensions, J. Fluid Mech. 224, 275-303 (1991).
[13] M. Stimson & G.B. Jeffery, The Motion of two spheres

in a viscous fluid. Proc. R. Soc. Lond. A111, 110 (1926)
[14] J.M. Crowley, Viscosity-induced instability of a one-

dimensional lattice of falling spheres. J. Fluid Mech. 45,
151–159 (1971)

[15] R. Lahiri & S. Ramaswamy, Are Steadily Moving Crys-
tals Unstable?, Phys. Rev. Lett. 79, 1150–1153 (1997).

[16] G.B. Jeffery, The motion of ellipsoidal particles immersed
in a viscous fluid. Proc. R. Soc. Lond. 102, 161–179
(1922)

[17] S. Jung, S.E. Spagnolie, K. Parikh, M. Shelley & A.K.
Tornberg, Periodic sedimentation in a Stokesian fluid.
Phys. Rev. E 74, 035302 (2006)

[18] T. Goldfriend et al., Hydrodynamic Interactions between
Two Forced Objects of Arbitrary Shape. I. Effect on
Alignment. Physics of Fluids 27, 123303 (2015)

[19] S. Wakiya, Mutual interaction of two spheroids sediment-
ing in a viscous fluid. J. Phys. Soc. Jpn. 20, 1502–1514
(1965)

[20] A.J. Levine et. al. Screened and Unscreened Phases in
Sedimenting Suspensions, Phys. Rev. Lett. 81, 5944-5947
(1998).

[21] R.E. Caflisch & Jonathan H. C. Luke, Variance in the
sedimentation speed of a suspension, Phys. Fluids 28,
759 (1985).

[22] Supplemental material: text and videos,
[23] S. Kim, Sedimentation of two arbitrarily oriented

spheroids in a viscous fluid. Intl J. Multiphase flow 11,
699–712 (1985)

[24] A.T. Chwang & T.Y. Wu, Hydromechanics of low
Reynolds number flow, Part 2. J. Fluid Mech. 67, 787–
815 (1975)

[25] L.D. Landau & E.M. Lifshitz, Mechanics: Course of
Theoretical Physics 1, Butterworth-Heinemann, Oxford
(2010).

[26] L.F. Shatz, Singularity method for oblate and pro-
late spheroids in Stokes and linearized oscillatory flow.
Physics of Fluids 16, 664 (2004).


	Kepler orbits in pairs of disks settling in a viscous fluid
	Abstract
	Acknowledgments
	References


