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Early dark energy (EDE) that behaves like a cosmological constant at early times (redshifts
z & 3000) and then dilutes away like radiation or faster at later times can solve the Hubble tension.
In these models, the sound horizon at decoupling is reduced resulting in a larger value of the Hubble
parameter H0 inferred from the cosmic microwave background (CMB). We consider two physical
models for this EDE, one involving an oscillating scalar field and another a slowly-rolling field.
We perform a detailed calculation of the evolution of perturbations in these models. A Markov
Chain Monte Carlo search of the parameter space for the EDE parameters, in conjunction with the
standard cosmological parameters, identifies regions in which H0 inferred from Planck CMB data
agrees with the SH0ES local measurement. In these cosmologies, current baryon acoustic oscillation
and supernova data are described as successfully as in ΛCDM, while the fit to Planck data is slightly
improved. Future CMB and large-scale-structure surveys will further probe this scenario.

Local measurements of the Hubble parameter, from
supernovae [1, 2] and lensing time delays [3, 4], disagree
with the value inferred from a ΛCDM fit to the cosmic
microwave background (CMB) [5, 6], with local measure-
ments suggesting a higher value. This discrepancy is not
easily explained by any obvious systematic effect in either
measurement [7–10], and so increasing attention is focus-
ing on the possibility that this “Hubble tension” may be
indicating new physics beyond the standard ΛCDM cos-
mological model [11, 12].

However, theoretical explanations for the Hubble ten-
sion are not easy to come by. The biggest challenge re-
mains the very precisely determined angular scale of the
acoustic peaks in the CMB power spectrum, which fix
the ratio of the sound horizon at decoupling to the dis-
tance to the CMB surface of last scatter. Possible late-
time resolutions include a phantom-like dark energy (DE)
component [13, 14], a vacuum phase transition [15–18],
or interacting DE [19, 20]. However, these resolutions
are tightly constrained [1, 14, 20, 21] by late-time ob-
servables, especially those from baryon acoustic oscilla-
tions (BAO) [22–24]. Model-independent parameteriza-
tions of the late-time expansion history are similarly con-
strained [25–27]. An early-time resolution, which reduces
the sound horizon with additional radiation energy den-
sity [1, 2], is constrained by BAO and by the higher peaks
in the CMB power spectrum [20, 25]. It is also possible
to address the Hubble tension through a modification of
gravity [28–34].

Another early-time resolution [35, 36] is an exotic early
dark energy (EDE) that behaves like a cosmological con-
stant before some critical redshift zc but whose energy
density then dilutes faster than radiation. This addresses
the Hubble tension by increasing the early expansion
rate while leaving the later evolution of the Universe un-
changed. Ref. [35] investigated the effects on the CMB
under the assumption that the dark energy exhibited no
spatial fluctuations. A simple Fisher analysis of CMB

data suggested that the model could push the CMB-
inferred H0 in the right direction, but not enough.

Here, we present two physical models for EDE, one
that involves an oscillating scalar field and another with
a slowly-rolling scalar field. These models allow us to per-
form a complete analysis of the growth of perturbations
and of CMB fluctuations. We then perform a thorough
search of the parameter space for the scalar-field model
parameters, along with the classical cosmological param-
eters. Doing so, we find regions of the combined param-
eter space where the CMB likelihoods match (and even
slightly improve upon) those in the best-fit ΛCDM model
with values of H0 consistent with those from local mea-
surements. Moreover, our cosmological model is in good
agreement with constraints from BAO [22–24] and the
Pantheon supernovae dataset [37]. The fact that both an
oscillating and slowly-rolling scalar field can resolve the
Hubble tension indicates further that the success of the
resolution does not depend on the detailed mechanism
that underlies it. Our resolution requires a ∼ 5% contri-
bution from EDE to the total energy density at redshift
z ' 5000 that then dilutes later. Interestingly, hints for
such an increased expansion rate and/or reduced sound
horizon had been previously identified [10, 38].

Our first model for EDE is nominally a scalar field ϕ
with a potential V (ϕ) ∝ (1 − cos[ϕ/f ])n [39]. At early
times, the field is frozen and acts as a cosmological con-
stant, but when the Hubble parameter drops below some
value, at a critical redshift zc = a−1

c − 1, the field begins
to oscillate and then behaves as a fluid with an equation
of state wn = (n−1)/(n+1). In practice, numerical evo-
lution of the scalar-field equations of motion becomes ex-
tremely difficult once the oscillations become rapid com-
pared with the expansion rate, and so our numerical work
is accomplished with an effective-fluid approach [40] that
has been tailored specifically for this potential. Still, as
that work (and discussion below) indicates, our conclu-
sions do not depend on the details of the potential and
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would work just as well with, e.g., a simpler ϕ2n poten-
tial. Our second model is a field that slowly rolls down a
potential that is linear in ϕ at early times and asymptotes
to zero at late times. Numerical evolution of the scalar-
field equations of motion confirm that the resolutions we
find here with the effective-fluid approach are valid for
that model as well; details will be presented elsewhere
[41].

In the effective-fluid approximation, the EDE energy
density evolves as [40]

Ωϕ(a) =
2Ωϕ(ac)

(a/ac)
3(wn+1)

+ 1
, (1)

which has an associated equation-of-state parameter

wϕ(z) =
1 + wn

1 + (ac/a)3(1+wn)
− 1. (2)

It asymptotically approaches−1 as a→ 0 and wn for a�
ac, showing that the energy density is constant at early
times and dilutes as a−3(1+wn) once the field is dynamical
[42]. The homogeneous EDE energy density dilutes like
matter for n = 1, like radiation for n = 2 and faster than
radiation whenever n ≥ 3. For n → ∞, on reaching the
minimum of the potential, w∞ = 1 (i.e. the scalar field
is fully dominated by its kinetic energy) and the energy
density dilutes as a−6.

The equations governing the evolution of the pertur-
bations to the effective density δϕ and heat flux uϕ ≡
(1 + wϕ)θϕ, where θϕ is the bulk velocity perturba-
tion,1 can be written as discussed in Refs. [40, 43, 44].
Solving these equations requires the specification of the
EDE equation-of-state wϕ(z), the adiabatic sound speed

c2a ≡ Ṗϕ/ρ̇ϕ and effective sound speed c2s ≡ δpϕ/δρϕ (de-
fined in the rest-frame of the field). During slow roll and
assuming ϕ̇i = 0, generic scalar fields have wϕ ' −1,
c2a ' −7/3, and c2s = 1 [40, 43]. When the field be-
comes dynamical, wa and c2a can be calculated from the
background parametrization. The exact behavior of c2s
depends on the particular shape of the potential as de-
scribed in Ref. [40]. We also note that, just as with the
background dynamics, this parametrization describes the
case of the slow-roll model [41] by taking the limit n→∞
and setting c2s = 1 [44].

We run a Markov Chain Monte Carlo (MCMC)
using the public code MontePython-v32

[45, 46] and a modified version of the CLASS-
code [47, 48]. We perform the analysis with a
Metropolis-Hasting algorithm, assuming flat priors
on {ωb, ωcdm, θs, As, ns, τreio,Ωϕ,0,Log10(ac), φi}. In
addition, we run separate MCMCs to compare3

1 It is known [40, 43] that for a scalar field the evolution equation of
the velocity perturbation is unstable as w → −1 and we therefore
solve for the heat-flux.

2 https://github.com/brinckmann/montepython_public
3 The n = 1 case leads to an over-production of cdm once the field

starts diluting. We checked explicitly that it does not solve the
H0-tension by performing a dedicated run.

n = (2, 3,∞). Following the Planck collaboration, we
model free-streaming neutrinos as two massless species
and one massive with Mν = 0.06 eV [49]. Our data sets
include the latest SH0ES measurement of the present-
day Hubble rate H0 = 73.52±1.62 km/s/Mpc [2], Planck
high-` and low-` TT,TE,EE and lensing likelihood [50].
We also include BAO measurements from 6dFGS at
z = 0.106 [22], from the MGS galaxy sample of SDSS at
z = 0.15 [23], and from the CMASS and LOWZ galaxy
samples of BOSS DR12 at z = 0.38, 0.51, and 0.61 [24].
Note that the BOSS DR12 measurements also include
measurements of the growth function fσ8(z). Addi-
tionally, we use the Pantheon4 supernovae dataset [37],
which includes measurements of the luminosity distances
of 1048 SNe Ia in the redshift range 0.01 < z < 2.3.
Moreover, there are many nuisance parameters that
we analyze together with the cosmological ones using
a Choleski decomposition [51]. We consider chains to
be converged using the Gelman-Rubin [52] criterion
R− 1 < 0.1.

In Fig. 1, we show the marginalized 1D and 2D pos-
terior distributions of H0, ωcdm, fEDE(ac) and Log10(ac)
in ΛCDM and in the EDE cosmology with n = 2, 3 and
n → ∞, where fEDE(ac) ≡ Ωϕ(ac)/Ωtot(ac). We report
the best-fit χ2 for each experiment in Table I, while the
reconstructed mean, best fit and 1σ confidence interval
of the cosmological parameters are given in Table II. We
find that the best-fit χ2 in the EDE cosmology is re-
duced by −9 to −14 compared to ΛCDM using the same
collection of data-sets. This reduction in the χ2 is not
only driven by an improved fit of SH0ES data, but also
by an improved fit of CMB data compared to a ΛCDM
fit to all data-sets. Interestingly, in the global fit, the
EDE fits Planck data slightly better than ΛCDM fitted
on Planck only5. This is in stark contrast with the case
of extra-relativistic degrees of freedom, for which the χ2

of CMB and BAO data degrades (as shown on the last
column of Table I and also found by Refs. [13, 25, 27]).
In order to get an estimate of the statistical preference
of the EDE cosmology compared to ΛCDM, we trade
the full high-` likelihood for the much faster “lite” ver-
sion and make use of MultiNest [53] (with 500 live-
points and an evidence tolerance of 0.2) to compute the
bayesian evidence. We checked that this gives results
which are fully consistent with the MCMC on the full
likelihood. We perform model comparison by calculat-
ing ∆logB = logB(EDE)− logB(ΛCDM). Interestingly,
we find “definite” (or “positive”) evidence in favor of the
EDE cosmology in the n = 3 and n = ∞ model accord-
ing to the modified Jeffreys’ scale [54, 55]. While n = 2
has a better χ2 than the n = ∞ model, it has a weaker

4 https://github.com/dscolnic/Pantheon
5 The fit of ΛCDM on Planck only yields χ2

Planck ' 12951.5 for
the exact same precision parameters as the one used in the EDE
fits and convergence criterion R− 1 < 0.008. It can vary slightly
from the one quoted in Planck tables [5].

https://github.com/brinckmann/montepython_public
https://github.com/dscolnic/Pantheon
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evidence. We attribute this to the fact that n = 2 effec-
tively has one more free parameter since c2s depends on
φi, while c2s = 1 in the n =∞ model.
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Figure 1. Comparison between the marginalized 1D and 2D
posterior distributions of H0, ωcdm, fEDE(ac) and Log10(ac)
in the EDE cosmology with n = 2, n = 3 and n = ∞. The
best fit value of H0 in ΛCDM is shown in orange; the one
from SH0ES is shown in grey.
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Figure 2. The variation of the scales that are ‘fixed’ by the
CMB data with respect to fEDE(ac) as a function of ac with
all other cosmological parameters fixed at their Planck best-
fit values [6]. The colored bands indicate the marginalized 1σ
range of ac for each EDE model considered here.

One of the most interesting aspects of the EDE res-

olution of the Hubble tension is that the posterior dis-
tributions show that the field must become dynami-
cal around matter-radiation equality. Within the con-
text of ΛCDM, a simplified picture of the CMB power
spectrum can be described by three angular scales: `eq

(the projected Hubble horizon at matter-radiation equal-
ity), `s (the projected photon-baryon sound-horizon at
decoupling), and `D (the projected Silk damping scale
at decoupling) [56]. These angular scales are given by
the ratio of a physical scale at decoupling with the an-
gular diameter distance to the surface of last scatter-
ing: `X = πDA(z∗)/rX(z∗). Additionally, the overall
amplitudes of the CMB peaks (in particular, the first
one) are accurately measured by Planck. It is straight-
forward to show that PH ∝ ω−0.5

cdm , `eq ∝ ω0.5
cdmh

−0.2,

`s ∝ ω−0.16
cdm h−0.2, `s/`D = rs/rD ∝ ω0.03

cdm, where PH
stands for the height of the first peak and we assume
that the heights of the even and odd peaks fixes ωb. In
ΛCDM, the measured peak height determines ωcdm, al-
lowing an inference of h through `eq, `s, and `D. Al-
ternatively, using the determination of H0 from SH0ES,
one would deduce values of `eq, `s, and `D too small
compared to their measured values. As shown by several
recent studies [10, 25, 57], this can be re-cast as a mis-
match between the sound horizon deduced from Planck
data, and that reconstructed from the standard distance
ladder. The value of rs measured by Planck is higher by
∼ 10 Mpc compared to that directly deduced from the
distance ladder.

The role of the EDE is to decrease rs, while keeping
the angular scales and peak heights fixed via small shifts
in other cosmological parameters. For each value of n,
we show the fractional change in rs, rs/rD and PH with
fEDE(ac) as a function of ac in Fig. 2. The 1σ errors on
ac, reconstructed from our analysis, are also shown. Un-
surprisingly we find that the value of ac is driven to be
close to the maximal fractional change in rs (solid line).
Additionally, one can see that such an EDE leads to a
shift in the ratio rs/rD (dash-dotted line) and increase
in peak height (dotted line). From the above scaling re-
lations it is clear that the increase in the peak height
can be compensated by an increase in ωcdm, giving the
positive correlation between fEDE(ac) and ωcdm visible in
the 2D-posterior distribution shown in Fig. 1. Moreover,
the dynamics of the EDE compensate for such a change
in ωcdm, leaving the imprint of `eq on the power spectra
relatively unchanged. An increase in ωcdm leaves rs/rD
roughly unaffected but this ratio cannot be kept fully
fixed. This brings us to our main conclusion: the favored
EDE model is the one that, while maximizing the de-
crease in rs, minimizes6 the change in rs/rD. Using these
scaling laws, for n = 3 a resolution of the Hubble tension
will roughly require δωcdm ' 0.01 and fEDE(ac) ' 0.1 at

6 In practice, a relatively small shift in rs/rD is allowed as long as
a small shift in ns can compensate for it, leading to a mild shift
in the best-fit value of ns (see Table II).
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Log10(ac) ' −3.7. Strikingly, this crude estimate agrees
well with the best-fit values in Table II. This analysis
also explains why n = 3 is favored over the n = 2 and
n→∞ case. Moreover, we can understand why the EDE
cosmology is a “better” resolution of the Hubble tension
than increasing the effective number Neff of neutrino de-
grees of freedom: the effects of an additional radiation
energy density can be read off of Fig. 2 for the n = 2
case at Log10(ac) � −4.5. In that case, the EDE sim-
ply behaves like additional radiation all relevant times.
One can see that rs/rD is significantly affected, leading
to additional tension with the data, as previously noted
in Ref. [58].

We find that it is essential to consistently include per-
turbations in the EDE fluid. Neglecting perturbations
is inconsistent with the requirement of overall energy
conservation and therefore leads to unphysical features
in the CMB power spectra which restrict the success
of the resolution. This, in part, explains why a for-
mer study [35] did not find a good fit to the CMB for
fEDE(ac ' 10−3.5) ∼ 5%.

In Fig. 3, we show the residuals of the CMB TT (top
panel) and EE (bottom panel) power spectra calculated
in the best-fit EDE model with respect to our best-fit
ΛCDM (i.e. fit on all datasets). One can see that the EDE
leads to residual oscillations particularly visible at small
scales in the EE power-spectrum, which represent an
interesting target for next-generation experiments such
as the Simons Observatory [49], CMB-S4 [59] or CoRE
[60]. Additionally, the pattern around the first peak
(` ∼ 30−500) in the EE spectrum might be detectable in
the future by large-scales E-mode measurements such as
CLASS [61] or LiteBird [62]. Finally, the changes in rs,
ns, and As leave signatures in the matter power spectrum
that can potentially be probed by surveys such as KiDS,
DES and Euclid. This can also be seen in the parameter
S8 ≡ σ8(Ωm/0.3)0.5, which is shifted by about 1σ up-
wards from its ΛCDM value. This slightly increases the
so-called “S8 tension” (e.g. [63]) and therefore deserves
more attention in future work. For example, the tension
with the most recent KiDS cosmic-shear measurement
[64] increases from 2.3σ to 2.5σ. As a first check, we have
performed additional runs including SDSS DR7 [65] and
KiDS [66] likelihoods, and found that our conclusions are
unaffected.

In this Letter, we have shown that an EDE that begins
to dilute faster than matter at a redshift zc & 3000 can
explain the increasingly significant (currently 3.8σ) ten-
sion between H0 inferred from the CMB [6] and Cepheid
variables/supernovae at low redshifts [2]. Using Planck,
BAO measurements, the Pantheon supernovae data, the
local SH0ES measurement of H0 and a MCMC analysis,
we found that a field accounting for ∼ 5% of the total
energy density around z ∼ 5000 and diluting faster than
radiation afterwards can solve the Hubble tension with-
out upsetting the fit to other data sets. We found that
in the EDE cosmology the best-fit χ2 is reduced by −9

to −14 (with a slight preference for n = 3) compared to
ΛCDM using the same data-sets. Moreover, the ΛCDM
fit to just the Planck data is as good as the combined fit
to all of the data sets in the EDE cosmology. This is in
stark contrast with the popular increased-Neff resolution.

The oscillating field EDE may naturally arise in the
‘string-axiverse’ scenario [39, 67–70]. The standard axion
potential is obtained for n = 1, while higher-n potentials
may be generated by higher-order instanton corrections
[71]. The EDE resolution of the Hubble tension, along
with the current accelerated expansion and the evidence
for early-Universe inflation (and perhaps the accelerated
expansion postulated [40, 72] to account for EDGES [73])
may suggest that the Universe undergoes episodic periods
of anomolous expansion, as suggested in Refs. [35, 39, 74–
77].
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Figure 3. Residuals of the CMB TT (top panel) and EE
(bottom panel) power spectra calculated in the best-fit EDE
model with respect to ΛCDM, obtained from our MCMC
analyses. Blue points show residuals of Planck data, while or-
ange bands show the binned Cosmic Variance with the same
bins and weights as Planck.

A future cosmic-variance-limited experiment around
` ∼ 30−500 and above ` ∼ 1500 could probe the specific
residual oscillations in the CMB power spectra associated
with the EDE dynamics, while the shifts in As, ns, rs,
and keq will be probed by future LSS surveys.
Note added: as this work was being completed, a new

value of H0 was published by SH0ES increasing the ten-
sion with ΛCDM from Planck to 4.4σ [78].
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Datasets ΛCDM n = 2 n = 3 n =∞ Neff

Planck high-` 2449.5 2448.4 2445.9 2445.4 2451.9

Planck low-` 10494.7 10494.2 10492.8 10493.8 10493.8

Planck lensing 9.2 9.4 9.6 11.7 9.8

BAO-low z 1.7 2.1 2.1 1.8 2.7

BAO-high z 1.8 1.9 1.9 1.9 2.0

Pantheon 1027.1 1027.3 1026.9 1026.9 1027.1

SH0ES 11.1 2.3 1.4 4.6 3.9

Total χ2
min 13995.1 13985.6 13980.6 13986.0 13991.2

∆χ2
min 0 -9.5 -14.5 -9.1 -3.9

∆ logBa 0 -0.51 +2.51 +2.41 -0.44
a The evidence has been calculated from the “lite” version of the high-` likelihood.

Table I. The best-fit χ2 per experiment for the standard ΛCDM model, the EDE cosmologies and ΛCDM+Neff . The BAO-low
z and high z datasets correspond to z ∼ 0.1 − 0.15 and z ∼ 0.4 − 0.6, respectively. For comparison, using the same CLASS
precision parameters and MontePython, a ΛCDM fit to Planck data only yields χ2

high−` ' 2446.2, χ2
low−` ' 10495.9 and

χ2
lensing ' 9.4 with R− 1 < 0.008.

1.04149 Parameter ΛCDM n = 2 n = 3 n =∞
100 θs 1.04198 (1.04213)± 0.0003 1.04175 (1.0414)+0.00046

−0.00064 1.04138 (1.0414)± 0.0004 1.04159 (1.04149)± 0.00035

100 ωb 2.238 (2.239)± 0.014 2.244 (2.228)+0.019
−0.022 2.255 (0.258)± 0.022 2.257 (2.277)± 0.024

ωcdm 0.1179 (0.1177)± 0.0012 0.1248 (0.1281)+0.003
−0.0041 0.1272 (0.1299)±0.0045 0.1248 (0.1249)± 0.0041

109As 2.176 (2.14)± 0.051 2.185 (2.230)± 0.056 2.176 (2.177)± 0.054 2.151 (2.177)± 0.051

ns 0.9686 (0.9687)± 0.0044 0.9768 (0.9828)+0.0065
−0.0072 0.9812 (0.9880)± 0.0080 0.9764 (0.9795)± 0.0073

τreio 0.075 (0.068)± 0.013 0.075 (0.083)± 0.013 0.068 (0.068)± 0.013 0.062 (0.066)± 0.014

Log10(ac) − −4.136 (−3.728)+0.57
−0.013 −3.737 (−3.696)+0.110

−0.094 −3.449 (−3.509)+0.047
−0.11

fEDE(ac) − 0.028 (0.044)+0.011
−0.016 0.050 (0.058)+0.024

−0.019 0.054 (0.057)+0.031
−0.027

rs(zrec) 145.05 (145.1)± 0.26 141.4 (139.8)+2
−1.5 140.3 (138.9)+1.9

−2.3 141.6 (141.3)+1.8
−2.1

S8 0.824 (0.814)± 0.012 0.826 (0.836)± 0.014 0.838 (0.842)± 0.015 0.836 (0.839)± 0.015

H0 68.18 (68.33)± 0.54 70.3 (71.1)± 1.2 70.6 (71.6)± 1.3 69.9 (70)± 1.1

Table II. The mean (best-fit) ±1σ error of the cosmological parameters reconstructed from our combined analysis in each model.
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