
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Emergent SU(2) Dynamics and Perfect Quantum Many-
Body Scars

Soonwon Choi, Christopher J. Turner, Hannes Pichler, Wen Wei Ho, Alexios A. Michailidis,
Zlatko Papić, Maksym Serbyn, Mikhail D. Lukin, and Dmitry A. Abanin

Phys. Rev. Lett. 122, 220603 — Published  7 June 2019
DOI: 10.1103/PhysRevLett.122.220603

http://dx.doi.org/10.1103/PhysRevLett.122.220603


Emergent SU(2) dynamics and perfect quantum many-body scars

Soonwon Choi,1, ∗ Christopher J. Turner,2, ∗ Hannes Pichler,3, 4 Wen Wei Ho,3
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Motivated by recent experimental observations of coherent many-body revivals in a constrained
Rydberg atom chain, we construct a weak quasi-local deformation of the Rydberg-blockaded Hamil-
tonian, which makes the revivals virtually perfect. Our analysis suggests the existence of an under-
lying non-integrable Hamiltonian which supports an emergent SU(2)-spin dynamics within a small
subspace of the many-body Hilbert space. We show that such perfect dynamics necessitates the
existence of atypical, nonergodic energy eigenstates — quantum many-body scars. Furthermore,
using these insights, we construct a toy model that hosts exact quantum many-body scars, provid-
ing an intuitive explanation of their origin. Our results offer specific routes to enhancing coherent
many-body revivals, and provide a step towards establishing the stability of quantum many-body
scars in the thermodynamic limit.

Remarkable experimental advances have recently en-
abled studies of nonequilibrium dynamics of isolated,
strongly interacting quantum systems [1–3]. In such
systems, it is commonly believed that a generic state
far from equilibrium eventually thermalizes, whereupon
any initial local information becomes unrecoverable [4–
6]. While this process of thermalization provides the ba-
sis of statistical mechanics, it also poses challenges for
building large-scale quantum devices. Hence, it is of fun-
damental interest to understand mechanisms to evade
thermalization. Two well-studied possibilities include
many-body localization in strongly disordered systems,
and fine-tuned integrable systems [7–9].

Recently, quench experiments with Rydberg atom ar-
rays [10–12] have discovered non-thermalizing dynamics
of a new kind [12]. Initialized in a high-energy Néel state,
the system exhibited unexpectedly long-lived, periodic
revivals, failing to thermalize on experimentally acces-
sible timescales; in contrast, other high-energy product
states exhibited thermalizing dynamics consistent with
conventional expectations.

These surprising observations have stimulated strong
theoretical interest [13–17]. Ref. [13] showed that the
oscillatory dynamics stems from a small number of
nonthermal many-body eigenstates, which are embed-
ded in a sea of thermal eigenstates that generically
obey the eigenstate thermalization hypothesis (ETH) [4–
6]. These atypical, ergodicity-breaking eigenstates were
named ‘quantum many-body scars’ (QMBS) in analogy
to quantum scars in single-particle quantum systems,
which are similarly nonergodic wavefunctions that con-
centrate along the unstable, periodic trajectories of the
counterpart classical system [18]. Ref. [14] firmed up this
analogy by showing that the long-lived revivals were also
closely related to an unstable periodic orbit in a varia-

tional, “semiclassical” description of the quantum many-
body dynamics.

Despite much theoretical effort, several key questions
regarding the nature of QMBS remain open. In partic-
ular, owing to the slow decay, the ultimate fate of the
revivals at very long times in the thermodynamic limit is
not fully understood. Another outstanding challenge is
to understand the physical mechanism protecting scars in
the Rygberg chain and beyond. Ref. [16] conjectured that
the observed revivals arise due to proximity to a putative
integrable point. They demonstrated a nontrivial defor-
mation of the Rydberg-blockaded Hamiltonian that re-
sults in a substantial modification of the many-body level
statistics with the entire spectrum becoming accompany-
ingly nonthermal, that could be interpreted as proximity
to integrability. We note that earlier works [19, 20] have
demonstrated the coexistence of ETH-violating states in
a generically ergodic spectrum, by explicitly constructing
many-body eigenstates with low entanglement at arbi-
trary energy densities in a non-integrable AKLT model.
Also, it has been reported that quantum Ising models
with longitudinal field can exhibit weak thermalization
at low energy densities [21–23].

In the present work, we show that the periodic many-
body revivals of the effective model describing the experi-
ment [12] become extremely stable with a suitable weak,
quasi-local deformation, with the return probability of
the Néel state approaching unity within 10−6 for systems
with more than 30 particles. Remarkably, despite such
manifestly nonergodic dynamics at infinite temperature
and the strongly nonthermal character of the associated
scarred eigenstates, the bulk of the spectrum remains
well-thermal, in contrast to the conjecture in Ref. [16].
Rather than being integrable, the revival dynamics can
be understood as the coherent rotation of an emergent,
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Figure 1. Non-thermalizing dynamics in constrained spin Hamiltonians. (a) Many-body fidelity g(t) as a function of time for the
Hamiltonian H0 without any perturbations and with optimal perturbations Eq. (3)-(4). The inset shows the infidelity, 1− g(t).
(b) Half-chain bipartite entanglement entropy (EE) dynamics. At the optimal perturbation point, the EE shows bounded,
oscillatory dynamics. The inset shows the eigenvalues pµ(t) of the half-chain reduced density matrix. Numerical simulations
are performed with N = 32 starting from the Néel state. (c) Optimized perturbation strengths hd decay exponentially. Solid
line indicates the analytical ansatz function (4).

large SU(2)-spin that lives within a special subspace of
the many-body Hilbert space.

Our results strongly suggest the existence of a “parent”
Hamiltonian with perfect oscillatory dynamics. We prove
that, under generic settings, such perfect revivals impose
strong constraints on the structure of energy eigenstates,
necessitating the presence of some ETH-violating eigen-
states. This result directly relates observable nonequi-
librium dynamics to properties of energy eigenstates,
and parallels the mechanism behind quantum scarring
in single-particle quantum chaos [18]. Finally, guided by
the emergent SU(2)-spin structure, we construct a solv-
able toy model that explicitly hosts the phenomenology of
QMBS, which provides an intuitive explanation of their
origin in the constrained model.

Model and revivals. – The 1D array of Rydberg atoms
in the experiments [12] is well-described by a kinetically
constrained [24, 25] spin-1/2 chain with Hamiltonian

H0 =

N∑
i=1

Cσxi C, (1)

where σµi (µ∈{x, y, z}) are Pauli operators at site i, and
C=

∏
i[1−(1+σzi )(1+σzi+1)/4] is a global projector con-

straining the Hilbert space to spin configurations without
two adjacent up-spins, | ↑↑〉, corresponding to the regime
of a strong nearest-neighbor Rydberg blockade [26] in the
experiments [12]. The dynamics is such that a spin may
flip only when both of its neighbors are in the | ↓〉 state,
and the model is thus strongly interacting [27–29]. For
simplicity we assume periodic boundary conditions, and
only consider the constrained Hilbert space defined by
C = 1, whose dimensionality grows asymptotically as φN

where φ = (1 +
√

5)/2 is the Golden Ratio.
The model in Eq. (1) exhibits unexpected, long-

lived periodic revivals when initialized in the Néel state
|Z2〉= | ↑↓↑↓ · · ·〉. Despite its large energy density (cor-
responding to infinite temperature), quench dynamics

from this initial state exhibits large recurrences of the
Loschmidt echo g0(t)≡ |〈Z2|e−iH0t|Z2〉|2 at multiples of
a period τ with a slow overall decay (Fig. 1a) [12–16].
This is accompanied by a generally linear growth of the
bipartite entanglement entropy (Fig. 1b), which is slower
compared to thermalizing initial states. As shown in [13],
such dynamics arise due to the existence of a band of
special, nonthermal ‘quantum many-body scarred’ eigen-
states that have large overlaps with |Z2〉. Further-
more, these special eigenstates can be approximately
constructed using an analytical framework dubbed the
forward scattering approximation (FSA) [13, 15]. In
essence, FSA relies on decomposing the Hamiltonian into
a “raising” and “lowering” part, H0 =H+

0 +H−0 , with
H±0 =

∑
i∈even Cσ±i C+

∑
i∈odd Cσ∓i C. Then, N + 1 vec-

tors |k〉0 =βkH
+
0 |k− 1〉0 can be recursively defined from

|0〉0 = |Z2〉, where k∈{0, 1, 2, . . . , N} and βk is the nor-
malization coefficient, spanning a subspace K. It has
been shown that eigenstates belonging to the special
band predominantly live in K [13, 15].

Stabilizing revivals.—In order to stabilize the revivals
of |Z2〉, we consider various perturbations that preserve
the particle-hole, time-reversal, and inversion symmetries
of the system (thus, pinning the energy of |Z2〉). Gener-
ically, most peturbations weaken the revivals. However,
we find that the following range-4 deformation

δH2 = −
∑
i

h2Cσxi C(σzi+2 + σzi−2) (2)

with h2≈ 0.05 (derived below), significantly improves the
fidelities of the revivals. Physically, this perturbation
corresponds to raising or lowering of a spin, depending
on the configuration of nearby spins. We note that this
form has been previously considered in Ref. [16], which
numerically found that at h2≈ 0.024, the entire spectrum
becomes least thermal. In contrast, our value of h2 is
approximately twice larger, and the spectrum remains
thermal, aside from the scarred eigenstates (see below).
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Our key observation is that δH2 partially cancels er-
rors arising in the FSA analysis. More specifically, the
precision of FSA, and therefore the fidelity of revivals,
relies on the dynamics from the |Z2〉 initial state gen-
erated by H±0 to be (nearly) closed in K. This con-
dition would be exactly achieved if the |k〉 were eigen-
states of the operator Hz

0 ≡ [H+
0 , H

−
0 ], but is generi-

cally not satisfied for 2≤ k≤N − 2. We find that this
error can be reduced by adding δH2 to the Hamil-
tonian, and redefining the raising (lowing) operators
H±0 7→H±2 (hence also Hz

0 7→Hz
2 ), and the subspace

K by replacing σ±i 7→σ±i
(
1 + h2(σzi+2 + σzi−2)

)
. For

example, one can analytically show that the compo-
nent of Hz

2 |2〉 perpendicular to |2〉 is minimized when
h2 = 1/2− 1/

√
5≈ 0.053 [30]. Indeed, this perturbation

strongly improves many-body revivals, leading to fidelity
g(τ) ≈ 0.998 at its first maximum for N = 32. Further-
more, the linear growth of entanglement entropy is sig-
nificantly slowed [30].

The dramatic increase in revival fidelities owing to δH2

suggests that it might be possible to further enhance the
oscillations, making them perfect. It is natural to con-
sider longer-range perturbations of the form

δHR = −
∑
i

R∑
d=2

hdCσxi C
(
σzi−d + σzi+d

)
, (3)

which describe additional interactions between pairs of
spins separated by a distance d, with strengths hd. We
numerically optimize hd by maximizing the fidelity g(t)
under H =H0 + δHR at its first revival, see Fig. 1c for
N = 20 with R= 10. In [30], we show that qualita-
tively similar results are obtained from other optimiza-
tion methods, e.g. minimizing errors in FSA, etc. We
find that the optimized hd decay exponentially at large
d, and can be very well approximated by the expression

hansatzd = h0

(
φ(d−1) − φ−(d−1)

)−2
, (4)

where φ is the Golden Ratio, and h0 is a single param-
eter determining the overall strength. Henceforth, we
will use hd from Eq. (4) truncated at the maximum dis-
tance R=N/2, which allows us to perform a meaning-
ful finite-size scaling analysis. Numerical optimization
of the ansatz yields h0≈ 0.051. Below, we will derive
this value from certain algebraic relations among H±, Hz

within the subspace K, which are appropriately redefined
quantities from H±0 , H

z
0 ,K accounting for the long-range

terms in an analogous fashion as the case forR = 2 above.

Dynamics under the Hamiltonian H =H0 + δHR

makes the |Z2〉 revivals even more stable, with 1− g(τ) ≈
10−6 for N = 32 at the first revival (Fig. 1a). Simulta-
neously, we observe that the linear growth of the bipar-
title entanglement entropy is significantly reduced, and
is barely discernible (Fig. 1b). A scaling analysis in [30]
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Figure 2. (a) The overlap of |Z2〉 with energy eigenstates of
H is dominated by N + 1 special ones (red circles), well sepa-
rated from the bulk. The density of data points is color coded.
(b) Eigenvalue level statistics of both H0 and H for N = 32
closely follow that of Wigner-Dyson class of the Gaussian Or-
thogonal Ensemble. (c) Level statistics indicator 〈ri〉 as a
function of system size N flows to its value in the Wigner-
Dyson ensemble, indicating that the bulk of the system re-
mains ergodic. All data is for the momentum k= 0, inversion
even sector.

suggests that the average rate of local thermalization, de-
fined by the decay of g(t)1/N , at late times vanishes in
the thermodynamic limit.

Dynamics constrains eigenstate properties.—The pos-
sible existence of a parent Hamiltonian leading to per-
fect oscillatory dynamics, strongly and quantifiably con-
strains the nonergodic nature of the quantum many-body
scars. Specifically, we can appeal to the following general
relation, whose proof is simple and given in [30]:

Lemma: Consider a generic many-body Hamiltonian
H with extensive energy, ||H||=O(N). If an initial state
|Ψ0〉 under time evolution perfectly comes back to itself
after some finite time τ , independent of the system size
N , i.e. |〈Ψ0|e−iHτ |Ψ0〉|= 1, then |Ψ0〉 can be decomposed
into O(N) energy eigenstates, and at least one of them,
|ε〉, has a large overlap, |〈ε|Ψ0〉|2≥O(1/N).

If the periodic revival occurs for a physical state |Ψ0〉
with a finite energy density (that obeys the cluster de-
composition, so that the energy variance goes as N), such
as |Z2〉 in our case, this Lemma dictates the presence of
a high energy eigenstate with a large overlap ∼ 1/N with
a low-entangled state. This constitutes a violation of
the ergodic scenario, where a high energy eigenstate is
expected to be similar to a random vector in the expo-
nentially large Hilbert space.

In accordance with this result, the decomposition of
the Néel state |Z2〉 is seen to be dominated by N + 1
special eigenstates of H (Fig. 2a), which are much better
separated from the bulk than in the case of unperturbed
Hamiltonian. We also confirm that these eigenstates ex-
hibit nonergodic properties, such as the logarithmic scal-
ing of entanglement entropy, and can furthermore be con-
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structed by a straightforward extension of FSA with sig-
nificantly improved accuracy [15, 30].

Importantly, while the deformed model shows very
stable revivals, the bulk of the spectrum remains
thermal. To illustrate this, we compute the r-
parameter associated to the level repulsion of the en-
ergy levels Ei, 〈ri〉= 〈min(δi, δi+1)/max(δi, δi+1)〉 , where
δi =Ei+1−Ei is the level spacing and 〈·〉 indicates aver-
aging over a symmetry-resolved Hilbert space sector [31].
Figure 2c shows a clear flow in system size towards
〈ri〉 ≈ 0.53, the Wigner-Dyson value associated with
quantum chaotic Hamiltonians, implying the coexistence
of nonergodic dynamics and an ergodic bulk. In addi-
tion, the distribution P (s) of the unfolded level spacing
s is consistent with the Wigner-Dyson class of the Gaus-
sian Orthogonal Ensemble (Fig. 2b).

Algebraic structure in the subspace K.—The almost
perfect fidelity revivals of the deformed Hamiltonian im-
ply H± and Hz form a closed algebra within the subspace
K. Indeed we find numerically that

PK[Hz, H±]PK ≈ ±∆PKH
±PK, (5)

where PK=
∑
k |k〉〈k| is the projector onto K, and ∆ is

a constant. As |0〉= |Z2〉 is an eigenstate of Hz, |k〉 are
also approximate eigenvectors of Hz with harmonically
spaced eigenvalues Hz

k = 〈k|Hz|k〉 with ∆≈Hz
k+1−Hz

k .
Thus, upon a suitable rescaling, Hz plays the role of Sz

in the SU(2) algebra, and H± play the role of raising
and lowering operators within K. As the dimensional-
ity of K is N + 1, this implies that the operators form a
spin s=N/2 irreducible representation of the SU(2) al-
gebra, with |Z2〉 and |Z′2〉= | ↓↑↓↑ . . .〉 being the lowest
and highest weight states respectively. To check this, we
explicitly evaluated the matrix elements 〈k + 1|H+|k〉.
Figure 3a confirms that up to an overall multiplicative
factor, the matrix elements of H+ reproduce those of the
spin-raising operator S+ in this representation.

Thus, the virtually perfect oscillatory dynamics of
|Z2〉 can be understood as a large spin (s=N/2) point-
ing initially in an emergent “z-direction”, undergo-
ing coherent Rabi oscillations under the Hamiltonian
H =H+ +H−, which is akin to the Sx operator, with
period τ = 2π/

√
2∆. We stress that the emergence of this

SU(2) structure within K is nontrivial, since the Hamil-
tonian H does not have any rotational symmetry.

The identification of this emergent algebra allows us
to fix h0 of our ansatz for hd analytically. In particu-
lar, Hz

k can be explicitly calculated for k= 0, 1 in the
thermodynamic limit. Imposing a harmonic spacing,
i.e. Hz

k = ∆(k−N/2), leads to a nontrivial constraint [30]

(1− h)(1− h− 16

∞∑
n=1

h2n) = 16

∞∑
n=1

h22n, (6)

where h ≡ 2
∑
n≥2 hn(−1)n. This fixes h0≈ 0.0506656

in our ansatz Eq. (4), which agrees very well with the
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Figure 3. Emergent SU(2) structure in the subspace K.
(a) Matrix elements of the operator H+ between consecutive
vectors |k〉 are in excellent agreement with that of an appro-
priately rescaled raising operator S+ in the s=N/2 repre-
sentation of SU(2) shown as the solid curve. (b) The FSA
basis vectors |k〉 are approximate eigenstates of the operator
Hz with harmonically spaced eigenvalues. The inset shows
the residual of the eigenvalue spacing ∆k ≡Hz

k+1−Hz
k away

from its mean value. The error bars are extracted from vari-
ances in the expectation values of Hz in |k〉.

numerically optimized value. Furthermore, Eq. (6) de-
termines the harmonic gap ∆ = (1−h)2≈ 0.835845, and,
correspondingly, the oscillation period τ ≈ 4.85962, which
are also in excellent agreement with those from exact nu-
merical simulations [30].

Toy model.—The above investigations reveal that an
emergent SU(2) structure within a special subspace un-
derpins the many-body revivals. Motivated by this,
we construct a (solvable) toy model that exhibits sim-
ilar phenomenology: in this model, there is a band of
nonthermal eigenstates supporting perfect oscillatory dy-
namics and exhibiting logarithmic entanglement, embed-
ded in an otherwise thermal spectrum.

Consider a system of N spin-1/2 particles on a
ring. The special subspace V of our model is defined
as the common null space of N projection operators
Pi,i+1 = (1−~σi ·~σi+1)/4 onto neighboring pairs of singlets,
and is spanned by the N + 1 states of the largest spin rep-
resentation s=N/2 of the SU(2) algebra. We enumerate
the basis states |s = N/2, Sx = mx〉 of V by eigenvalues
of the Sx =

∑
i σ

x
i /2 operator, mx ∈ {−s, . . . s}.

Now, we take any Hamiltonian of the form

Htoy =
Ω

2

∑
i

σxi +
∑
i

Vi−1,i+2Pi,i+1, (7)

where Vij is a generic two-spin operator acting on spins
(i, j), e. g. Vi,j =

∑
µν J

µν
ij σ

µ
i σ

ν
j with arbitrary coeffi-

cients Jµνij . Note that Htoy does not commute with
Pi,i+1 nor Sx; thus, it does not have any obvious lo-
cal symmetries. However, it can be easily verified that
|s = N/2, Sx = mx〉 are eigenstates with harmonically
spaced energies E= Ωmx. On the other hand, states in
the Hilbert space outside of V are affected by Vi−1,i+2

terms, and hybridize to form ergodic eigenstates [30].
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Now, initializing our system, for example, in the low-
est weight state |N/2, Sz =−N/2〉 leads to rotations of
a large spin around the x-axis with frequency Ω, whose
motion remains in V. We note that our construction is
reminiscent of Shiraishi and Mori’s [32] where a set of
local projectors was used to embed certain nonergodic
energy eigenstates into the bulk of a many-body spec-
trum.

Clearly, Htoy exhibits all the features of perfect quan-
tum many-body scarring, and is appealing as an intu-
itive understanding of the origin of scars in the con-
strained spin models. However, there remain many open
questions: first, the explicit relationship between the
constrained spin model Eqs. (1)-(3) and the toy model
Eq. (7) is not obvious. The nonisomorphic Hilbert spaces,
as well as the nontrivial entanglement dynamics in the
constrained model (Fig. 1b), suggests that the mapping
between these two models, if exists, cannot be strictly
local. Second, it is highly desirable to find an analytic
derivation of the deformation, Eq. (3), that leads to the
emergent SU(2) algebra in the constrained spin model,
and understand when such deformations exist for other
local models. We note that this emergent algebra is rem-
iniscent of the η-pairing symmetry that holds exactly in
the Hubbard model [33], which allows to construct exact
eigenstates at finite energy density with logarithmic [34]
and subthermal entanglement [35].

Summary and outlook.— To summarize, we have con-
structed a constrained spin model which exhibits nearly
perfect QMBS. The remarkably long-lived oscillatory dy-
namics suggests that quantum scars remain stable in the
thermodynamic limit. We showed that the dynamics can
be understood in terms of a large, precessing SU(2) spin,
and used this intuition to introduce a family of toy mod-
els with perfect scarring. In future work, it would be
highly desirable to find an analytical mapping between
the toy models and the constrained spin model. More-
over, the approach developed here may be applied to sta-
bilize other types of quantum scars, in particular the ones
originating from the |Z3〉 state in the model (1) [15], as
well as the ones found in higher-spin constrained mod-
els [14]. Another exciting challenge is to find models in
which the MPS-based description of quantum scars tra-
jectory becomes exact [14]. In a broader context, special
non-thermalizing trajectories may have intriguing con-
nections to revivals/slow thermalization in strongly ro-
tating gravitational systems [36, 37]. To understand the
origin of this non-thermalizing dynamics, it would be
valuable to establish whether QMBS can emerge from
a dynamics that goes through states with high entangle-
ment.
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