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We propose a topological characterization of Hamiltonians describing classical waves. Applying it
to the magnetostatic surface spin waves that are important in spintronics applications, we settle the
speculation over their topological origin. For a class of classical systems that includes spin waves
driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines
in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays
an essential role. We define winding numbers around these vortex lines and identify them to be
the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence
appropriately reformulated for these classical waves, we predict that surface modes appear but not
in a gap of the bulk frequency spectrum. This feature, consistent with the magnetostatic surface
spin waves, indicates a broader realm of topological phases of matter beyond spectrally gapped ones.

The principle of bulk-edge correspondence is a corner-
stone in the field of topological phases of matter [1]: at
the boundary of a system whose bulk frequency spec-
trum is topologically nontrivial, there should appear lo-
calized edge modes with eigenfrequencies in a gap of the
bulk spectrum. This principle underlies the unconven-
tional stability of chiral edge states in quantum Hall in-
sulators [2] and Dirac surface states of topological insu-
lators [3], and has more recently led to predictions of
edge modes in various classical systems [4–6]. The bulk
system topology is usually characterized by a topolog-
ical invariant defined for Hamiltonians describing spa-
tially unbounded systems with specified symmetry oper-
ations. It dictates the existence and number of topologi-
cally protected edge modes. The corresponding hallmark
of these edge states is their robustness against symmetry-
preserving perturbations.

The insensitiveness of edge states to material parame-
ters strikes a chord in the field of magnetism. Since their
discovery in 1960 [7], ferromagnetic spin waves known
as “magnetostatic surface waves” (MSSWs) have been a
subject of various experimental and theoretical studies.
These edge modes owe their intrinsic chiral structure to
dipole-dipole interactions. MSSWs propagate perpendic-
ular to the ordered magnetization regardless of the sam-
ple geometry, be it a slab [8] or a sphere [9]. They are
known to be anomalously robust against back scatter-
ings [10, 11], hinting towards a topological origin. The
chirality and robustness render them interesting for many
fundamental studies, e.g. for non-reciprocal transport of
spin [12] and heat [13]. Today, in the context of magnon

spintronics [14], MSSWs are almost exclusively used in
studies of spin-wave transport in microstructures since
they offer the largest decay length of all available modes
and are easily excited by the commonly used inductive
microwave antennas. It is therefore of fundamental inter-
est whether MSSWs are indeed topologically protected or
not.

In this Letter, we show that the bulk Hamiltonian of
spin waves in the presence of dipole-dipole interactions
is characterized by a topological invariant. A pair of
vortex lines in the Brillouin zone acts as extended Dirac
monopoles, which cannot be removed by small continu-
ous changes in system parameters. We demonstrate that
these topological vortex lines lead to MSSWs via the no-
tion of class CI semimetals. Symmetry class CI [15] is for-
mally defined by the presence of two symmetry operators
Γ and T . Even though they are conventionally called chi-
ral and even time-reversal symmetry respectively, these
mathematical operations are realized for MSSWs as the
symplectic structure [16] and the reality condition that
are both inherent to classical mechanics. We first show
that in a quantum mechanical context, class CI semimet-
als have edge states which appear in a band gap. The
dipolar Hamiltonian has a topologically nontrivial class
CI semimetal structure. Because it describes classical
waves, however, the topological edge states have instead
eigenfrequencies above the bulk spectrum, in agreement
with MSSWs. Motivated by this example, we establish a
new type of bulk-edge correspondence for a general class
of classical mechanical systems (FIG. 1(a)).

It is instructive to first visualize the setup (FIG. 1(b)).
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FIG. 1. (a) The class of systems presented in the Letter. The
symmetry class is CI with Γ and T , but we further focus on
a subclass, denoted CI*, in which ω plays the role of Γ. (b)
The real space setup (Left) and the corresponding Fourier
space (Right) structure for MSSWs. The green straight lines
along ky axis belong to class AIII with well-defined winding
numbers.

The 3D Brillouin zone in class CI can be sliced up into
1D subsystems (green straight lines in FIG. 1(b)), which
generically possess only Γ-symmetry and thus belong to
class AIII. As in the Su-Schrieffer-Heeger model [17], the
bulk topological invariant of class AIII in 1D is the integer
winding number over the 1D Brillouin zone. Its nonzero
value guarantees topologically protected dangling edge
modes [18, 19] even in the presence of disorder [20, 21].
For dipolar spin waves, each subsystem gives winding
number ±1 which remains constant as the slice is varied,
unless a vortex line is crossed, forcing a discontinuous
jump by 2. This topological structure is analogous to
Weyl semimetals, where the slice-wise 2D Chern number
stays constant away from band-crossings (Weyl points) in
the 3D Brillouin zone, but changes discontinuously when
a Weyl point is traversed [22]. While Weyl semimetals are
characterized by the Dirac monopole charges of the Weyl
points (along with the Dirac strings connecting them [23,
24]), the dipolar spin wave Hamiltonian features vortex
lines of 1D “extended monopoles” in 3D, i.e. topological
defects of codimension two.

We elaborate on this structure by elementary winding
number analysis augmented with T -symmetry, following
ideas in Refs. [23, 25]. We assume that the system is
periodic on a 3D lattice Z3 and denote the Brillouin zone
by T3. By definition of a class CI Hamiltonian H [15],
given are a unitary Γ and an antiunitary T such that
{H,Γ} = [H, T ] = {Γ, T } = 0, Γ2 = T 2 = 1 where [·, ·]
({·, ·}) denotes (anti-)commutator. In the Brillouin zone,

FIG. 2. (a) Graphical proof of the charge cancellation. Due
to 2π periodicity in kx, ky, the solid, dashed and dotted loops
are continuously deformable to each other without crossing
TRIMs. The dotted loops are contractible to two points,
hence trivial with zero winding. (b) Determination of the
winding of large loops by a deformation of small loops. Due
to T -symmetry, large loops kx = k0 and kx = −k0 have the
same windings w = wT .

Γ-symmetry means

Hk =

(
0 Uk

U†k 0

)
, k = (kx, ky, kz) ∈ T3, (1)

in a basis in which Γ = 1 ⊗ σ3 (σ1,2,3 denote Pauli
matrices), while time-reversal symmetry T relates the
Hamiltonian at k and −k by U−k = U tk. Suppose Hk

is gapped, i.e. its eigenvalues are all nonzero, on T3\L
where L = {k ∈ T3|kx = 0, π, ky = 0, π} is a set of
four vortex lines parallel to kz. More general line de-
fects are obtained by either deforming or splitting the
four straight lines passing through the TRIMs on kz = 0
plane [26]. Here we focus on the straight line configu-
ration realized by MSSWs for readability. The gap con-
dition means detUk 6= 0 on T3\L. Let us first exam-
ine the slice T2 = {k ∈ T3|kz = 0}, which the vortex
lines intersect at its four time-reversal invariant momenta
(TRIMs). Take a small but otherwise arbitrary loop `a
encircling only the a-th TRIM (labelling in FIG. 2(a)),
oriented counterclockwise. Define its winding number by

wa =
1

2πi

∮
`a

d {ln (detUk)} , a = 0, 1, 2, 3. (2)

The winding number is an integer topological invariant,
insensitive to perturbations of U (thus of H that respects
Γ and the gap condition), and deformations of `a (avoid-
ing the vortices). As graphically proven in FIG. 2(a),
there is a “charge cancellation” consistency condition∑3
a=0 wa = 0 because the sum may be evaluated in a

second way which is manifestly trivial.
By T -symmetry, the wa are enough to determine the

winding numbers along “large” loops of T2 (say, at con-
stant kx or ky, FIG. 2(b)). First, any small loop `a can
be deformed into a symmetric one which is mapped onto
itself under T : k→ −k. In Eq. (2), the integrand for one
half of `a is repeated on the other half, so that the total
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line integral should be an even integer. Similarly, a large
winding around ky at a fixed kx = k0 6= 0, π must equal
that at kx = −k0 evaluated along the opposite orienta-
tion, and they are constrained by their sum equalling that
of the enclosed small windings. As for the 2D slices with
kz 6= 0, π which do not respect T individually, continuity
along kz forces on them the same topological structure
as the kz = 0 slice (FIG. 1(b)). To summarize, Hamilto-
nians in class CI with 1D line defects L are topologically
characterized by three independent small even windings
(w0, w1, w2) ∈ (2Z)3. If wa 6= 0, there is a corresponding
vortex line of topologically protected gapless points or
singularities of Hk.

To obtain the CI semimetal bulk-edge correspondence,
consider for some fixed kx, kz 6= 0, π, the two class AIII
1D subsystems T(kx,kz) and T(−kx,−kz) along the y direc-
tion. Their (large) winding numbers are equal and op-
posite by T -symmetry, and if nonzero, the 1D bulk-edge
correspondence of class AIII ensures that when a sur-
face is cut along x-z plane, there appear surface-localized
eigenstates of H with zero eigenvalue. A similar argu-
ment holds with x replaced by y. If at least one wa is
nonzero, then some Tkx,kz or Tky,kz has nonzero winding
number, implying the existence of edge eigenstates.

The application of the CI semimetal setup presented
above requires a Hamiltonian operator acting on a com-
plex Hilbert space. To introduce such a structure for
classical mechanical systems on a lattice Z3, a metric
plays a crucial role; below we explain why [26]. In clas-
sical mechanics [16], one starts from a real symplectic
vector space V whose coordinates are canonical variables
v = ({pn}, {qn})t ∈ V,n ∈ Z3. The symplectic two-
form ω =

∑
n dpn ∧ dqn can be regarded as a linear

map identifying V with the dual space V ∗. In linearized
problems, the dynamics is determined by a positive def-
inite quadratic energy function E(v), i.e. another linear
map V → V ∗. Hamilton’s equations of motion read
dv/dt = I ◦E(v), where I = ω−1 : V ∗ → V is the Poisson
bracket and ◦ denotes composition of maps. Note that E
is not an operator (a map V → V ). One way of promot-
ing the energy E : V → V ∗ to an operator is to assume
that a preferred metric g : V → V ∗ is given on V and
define H = g−1 ◦ E : V → V . Indeed H defined in this
way is what one calls Hamiltonian in problems where V
comes with a natural Euclidean metric. Now the equa-
tions of motion may be rewritten as dv/dt = JHv where
J = I ◦ g : V → V satisfies J t = −J (transpose with
respect to g). By rescaling g′ = g ◦

√
−(I ◦ g)−2, we can

further arrange for J2 = −1.

For a given classical system with a (rescaled) met-
ric as above, i.e. maps ω,E, g : V → V ∗, we shall say
H = g−1 ◦ E belongs to class CI* if there exists a posi-
tive h0 ∈ R+ such that {H−h0, J} = 0 with J = ω−1◦g.
To recognize the connection to the definition of class CI,
we complexify V to V C = V ⊕iV and extend g,H, J com-
plex linearly to V C. This step is usually implicit when

one carries out Fourier transforms. Here, H always has
the even “time-reversal” symmetry T of complex conju-
gation, reflecting the reality of the original problem. One
can also introduce a chiral symmetry Γ = iJ , which is
unitary and satisfies {H − h0,Γ} = {T ,Γ} = 0, Γ2 = 1.
Therefore, a classical H in class CI* has the complexified
H − h0 in class CI. If H − h0 is semimetallic with vortex
lines L, the winding numbers (w0, w1, w2) topologically
characterize H. In a basis where Γ = 1⊗σ2, the classical
Hamiltonian takes its canonical form

H = h0 + S ⊗ σ1 + C ⊗ σ3 (3)

with some real operators S,C. A basis transform by Q =
{1 + i(σ1 +σ2 +σ3)}/2 brings Γ into Q†ΓQ = 1⊗σ3 and
H − h0 into the off-diagonal form as in Eq. (1) with the
Fourier transform of U = C − iS providing the winding
numbers, Eq. (2). If some wa 6= 0, the CI semimetal
bulk-edge correspondence predicts edge states in the gap
of H at h0, i.e. Hvn0 = h0vn0 .

We now reveal that the edge states vn0
appear above

the physical bulk frequency spectrum. Although the eigen-
values of H do not equal physical eigenfrequencies in gen-
eral, there is a one-to-one correspondence between them
within class CI*. Suppose 0 6= vn+ ∈ V is an eigenvector
of H with eigenvalue h0 + εn > 0. The class CI* con-
dition {H − h0, J} = 0 implies that vn− ≡ Jvn+ ∈ V
satisfies Hvn− = (h0 − εn)vn−. Whether εn = 0 or not,
vn− 6∝ vn+ because the eigenvalues of J are ±i while vn±
are both real. Hence all eigenvectors of H come in pairs
vn± mutually related by J with respective eigenvalues
h0 ± εn. One can choose the label n such that εn ≥ 0.
Since vn± form a complete set of basis vectors, the gen-
eral solution of Hamilton’s equations dv/dt = JHv is
given by v =

∑
n,± cn±(t)vn± with the time-dependent

coefficients satisfying

d

dt

(
cn+
cn−

)
=

(
0 −h0 + εn

h0 + εn 0

)(
cn+
cn−

)
. (4)

This yields

cn± = An(h0 ± εn)−1/2 cos(ωnt+ αn ∓ π/4) (5)

where An, αn are constants and ωn =
√
h20 − ε2n is the

physical eigenfrequency. This clearly shows that the edge
states with εn0

= 0 have the physical frequency ωn0
= h0

higher than those of the bulk modes with εn 6= 0.
While our topological characterization of class CI

Hamiltonians is interpreted in the classical mechanical
framework, previous studies of topological spin waves [5,
27, 28] focused on eigenvalues of iJH in the Bogoliubov-
de Gennes formalism. To the best of our knowledge, their
approach seems to always predict gapless edge modes,
and consequently Ref. [5] missed the topological nature
of MSSWs.

To summarize, classical problems with a metric have
a natural candidate for chiral symmetry in Γ = iJ =
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iω−1◦g. If H up to a constant shift anticommutes with Γ,
the (real) eigenvectors of H do coincide with the physical
eigenstates, while its eigenvalues h0 ± εn correspond to
the physical eigenfrequencies ωn =

√
h20 − ε2n. If there

is a “gapless” edge “state” of H (εn0
= 0) protected by

a CI semimetal structure, there exists an edge-localized
physical eigenstate whose frequency (ωn0

= h0) appears
above the bulk frequency spectrum.

The general framework presented above requires only
the specified symmetry conditions. We now demon-
strate that all those assumptions are almost faithfully
respected by dipolar spin waves traveling perpendicu-
lar to the magnetization [8]. Consider a simple cubic
lattice of classical spins interacting only with an exter-
nal magnetic field B > 0 along z direction and between
each other via dipole-dipole interactions. The ground
state satisfies sn = (0, 0, 1),n ∈ Z3 where sn is the nor-
malized spin vector at site n. The energy function of
spin waves in terms of the linearized spin components
sn ≈ (sxn, s

y
n, 1− {(sxn)2 + (syn)2}/2) yields [29]

E = B′
∑
n

sαns
α
n −G

∑
n 6=n′

∂2

∂nα∂n′β

(
1

|n− n′|

)
sαns

β
n′

(6)
where sums over α, β = x, y are implicit, B′ = B +
4πG/3 [30] and the constants B and G are appropri-
ately normalized. sxn and syn are identified to be pn, qn
respectively with the area two-form of the sphere (phase
space of sn) acting as the symplectic two-form ω [31].
The system comes with the Euclidean metric g = δαβ
of the spin configuration space, with which the Hamilto-
nian H is identical to E as a matrix. Applying spatial
Fourier transform, H decomposes over the Brillouin zone
as two-by-two matrices Hk = (B +Dk)1+Skσ1 +Ckσ3
(1 is the unit matrix) each acting on (pk, qk). For k ≈ 0,
i.e. in the long-range limit, the coefficient functions are
approximated by

Dk = 2πG
k2x + k2y

|k|2
, Sk = 2πG

2kxky

|k|2
, Ck = 2πG

k2x − k2y
|k|2

.

(7)
Hk is already in the class CI* canonical form Eq. (3)
with h0 = B +Dk and has complex conjugation as a T -
symmetry. σ2 is identified with a chiral symmetry, which
is exact when Dk is constant. To compute the winding
number, note Uk = Ck − iSk as stated below Eq. (3).
Substituting it into Eq. (2) yields w0 = −2 around the
origin (and kz axis), proving that the dipolar Hamilto-
nian is topologically non-trivial. Although expressions
for Dk, Sk, Ck away from the origin are not available in a
closed analytical form, they can be numerically evaluated
by Ewald’s method [32] as plotted in FIG. 3. One con-
firms Uk 6= 0 along k = (0, π, kz), (π, 0, kz) and Uk = 0
(i.e. a vortex line is located) along k = (π, π, kz) [26].
Thus the topology of the dipolar spin wave Hamiltonian
is characterized by (w0, w1, w2) = (−2, 0, 0). All the 1D

FIG. 3. Numerically evaluated Fourier transform of the
Hamiltonian (6) for constant kz slices (we set G = 1): Dk

(Left), Sk (Center) and Ck (Right) with kz = 0 (blue), 0.2π
(green) and 0.5π (yellow).

slices for fixed kx, kz 6= 0, π have winding numbers ±1.
Note that the slices ±(kx, kz) are paired by the reality
condition (“T -symmetry”) and represent the same phys-
ical degrees of freedom. Therefore, when a surface is cut
along x-z plane, one surface mode for each kx, kz is ex-
pected.

Strictly speaking, the bulk-edge correspondence is
valid only if Dk is constant. It is satisfied on the kz = 0
slice in the long-range limit as Dk → 2πG and the
eigenfrequency of the corresponding edge mode should
be ω = B + 2πG, which is precisely the frequency of
MSSWs for kz = 0. Although Dk deviates from 2πG
for kx,y of order unity, the numerical calculation shows
the k dependence is weak so that the chiral symmetry
is approximately satisfied for kz = 0 (FIG. 3). In con-
trast, on planes with constant kz 6= 0, Dk varies as much
as Sk or Ck does and chiral symmetry is violated. This
can explain the lack of robustness of obliquely travel-
ing MSSWs. Physically, we expect the chiral symme-
try breaking term Dk to shift the frequency of the edge
modes relative to that of bulk modes, eventually causing
them to merge with the bulk band and disappear. To
our knowledge, the fate of the class AIII bulk-edge cor-
respondence when strict chiral symmetry is broken while
the bulk winding is still well-defined is an open mathe-
matical problem.

Finally we discuss the chiral, unidirectional propaga-
tion of MSSWs. When a surface is cut in the y direc-
tion as in Fig. 1(b), edge states appear on the surface
Brillouin zone except for the projections of the bulk vor-
tex lines kx = 0, π. Thus the edge states always have
nonzero components of kx and one can define their chi-
rality with respect to the x direction. The reality con-
dition T means the pair of edge states at ±(kx, kz) are
physically identical so that the sign of kx itself cannot de-
cide the direction of propagation. This however also im-
plies there is one propagating mode for the pair of states,
which is thus necessarily chiral (i.e. it can propagate in
only one of ±(kx, kz) directions). The “chiral symmetry”
Γ is indeed correlated with the direction of propagation
in the following way. Recall that class AIII edge states
are eigenstates of Γ with their eigenvalues s = ±1 for
windings ±1 [18, 19, 21]. Due to the T -symmetry, edge
states with s = ±1 are paired up and form a single phys-



5

ical eigenstate. An explicit computation [26] shows that
s = +1 for kx ≷ 0 gives edge modes traveling in the
positive and negative x directions respectively.

In conclusion, we have established the notion of class
CI semimetals characterized by even windings around
vortex defect lines, and explained how they arise in cer-
tain classical mechanical systems. We constructed a chi-
ral symmetry operator from the symplectic two-form and
a metric. We showed that the corresponding chiral sym-
metric classical systems can support topologically pro-
tected edge modes with their eigenfrequencies appearing
above the bulk spectrum. The framework is applicable
to MSSWs for kz = 0 and reproduces all of their charac-
teristic features.
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Sato and Libor Šmejkal for helpful comments. This work
was supported by the Transregional Collaborative Re-
search Center (SFB/TRR) 173 SPIN+X, JSPS KAK-
ENHI Grant Number JP 18H05855, Australian Research
Council DE170100149, the German Research Founda-
tion (DFG) No. EV 196/2-1 and No. SI 1720/2-1, the
KIST Institutional Program, JST-ERATO ‘Spin Quan-
tum Rectification’ and AIMR Tohoku University.

∗ yamamoto.kei@jaea.go.jp
[1] A. Kitaev, V. Lebedev, and M. Feigel’man, in AIP Con-

ference Proceedings, Vol. 1134 (AIP, 2009) pp. 22–30.
[2] Y. Hatsugai, Physical Review Letters 71, 3697 (1993).
[3] L. Fu, C. L. Kane, and E. J. Mele, Physical Review

Letters 98, 106803 (2007).
[4] S. Raghu and F. D. M. Haldane, Physical Review A 78,

033834 (2008).
[5] R. Shindou, J.-i. Ohe, R. Matsumoto, S. Murakami, and

E. Saitoh, Physical Review B 87, 174402 (2013).
[6] C. L. Kane and T. C. Lubensky, Nature Physics 10, 39

(2014).
[7] J. R. Eshbach and R. W. Damon, Physical Review 118,

1208 (1960).
[8] R. Damon and J. Eshbach, Journal of Physics and Chem-

istry of Solids 19, 308 (1961).
[9] P. C. Fletcher and R. O. Bell, Journal of Applied Physics

30, 687 (1959).
[10] A. V. Chumak, A. A. Serga, S. Wolff, B. Hillebrands, and

M. P. Kostylev, Applied Physics Letters 94, 3 (2009).
[11] M. Mohseni, T. Bracher, Q. Wang, D. A. Bozhko,

R. Verba, B. Hillebrands, and P. Pirro, (2018),
arXiv:1806.01554.

[12] D. Sander, S. O. Valenzuela, D. Makarov, C. H. Mar-
rows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavas-
sori, S. Mangin, P. Pirro, B. Hillebrands, A. D. Kent,
T. Jungwirth, O. Gutfleisch, C. G. Kim, and A. Berger,
Journal of Physics D: Applied Physics 50, 363001 (2017).

[13] T. An, V. I. Vasyuchka, K. Uchida, A. V. Chumak, K. Ya-
maguchi, K. Harii, J. Ohe, M. B. Jungfleisch, Y. Ka-
jiwara, H. Adachi, B. Hillebrands, S. Maekawa, and

E. Saitoh, Nature Materials 12, 549 (2013).
[14] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and

B. Hillebrands, Nature Physics 11, 453 (2015).
[15] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W.

Ludwig, New Journal of Physics 12, 065010 (2010).
[16] V. I. Arnold, Mathematical Methods of Classical Mechan-

ics, Graduate Texts in Mathematics, Vol. 60 (Springer
New York, New York, NY, 1989).

[17] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Physical
Review Letters 42, 1698 (1979).

[18] S. Ryu and Y. Hatsugai, Physical Review Letters 89,
077002 (2002).

[19] K. Gomi and G. C. Thiang, Letters in Mathematical
Physics 109, 857 (2019).

[20] E. Prodan and H. Schulz-Baldes, Bulk and Boundary In-
variants for Complex Topological Insulators, Mathemat-
ical Physics Studies (Springer International Publishing,
Cham, 2016).

[21] G. M. Graf and J. Shapiro, Communications in Mathe-
matical Physics 363, 829 (2018).

[22] X. Wan, A. M. Turner, A. Vishwanath, and S. Y.
Savrasov, Physical Review B 83, 205101 (2011).

[23] V. Mathai and G. C. Thiang, Communications in Math-
ematical Physics 355, 561 (2017).

[24] V. Mathai and G. C. Thiang, Journal of Physics A: Math-
ematical and Theoretical 50, 11LT01 (2017).

[25] G. C. Thiang, K. Sato, and K. Gomi, Nuclear Physics
B 923, 107 (2017).

[26] See Supplemental Material for technical details.
[27] V. Peano and H. Schulz-Baldes, Journal of Mathematical

Physics 59, 031901 (2018).
[28] F. Lu and Y.-M. Lu, (2018), arXiv:1807.05232.
[29] A. Aharony and M. E. Fisher, Physical Review B 8, 3323

(1973).
[30] This expression of B′ is due to Ref. [33]. Also see Sup-

plemental Material.
[31] D. D. Stancil and A. Prabhakar, Spin Waves (Springer

US, Boston, MA, 2009).
[32] M. H. Cohen and F. Keffer, Physical Review 99, 1128

(1955).
[33] T. Holstein and H. Primakoff, Physical Review 58, 1098

(1940).


