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One of the challenges in strongly correlated electron systems, is to understand the anomalous electronic
behavior that develops at an antiferromagnetic quantum critical point (QCP), a phenomenon that has been ex-
tensively studied in heavy fermion materials. Current theories have focused on the critical spin fluctuations and
associated break-down of the Kondo effect. Here we argue that the abrupt change in Fermi surface volume
that accompanies heavy fermion criticality leads to critical charge fluctuations. Using a model one dimensional
Kondo lattice in which each moment is connected to a separate conduction bath, we show a Kondo breakdown
transition develops between a heavy Fermi liquid and a gapped spin liquid via a QCP with ω/T scaling, which
features a critical charge mode directly associated with the break-up of Kondo singlets. We discuss the possible
implications of this emergent charge mode for experiment.

Introduction - The relation between valence fluctuations
and the Kondo effect has long fascinated the physics com-
munity [1]. A partially occupied atomic state, weakly hy-
bridized with a conduction sea, forms a local moment [2]
and its virtual valence fluctuations give rise to low frequency
spin-fluctuations, while leaving its charge essentially frozen.
On the other hand, in heavy fermion systems, the Kondo-
screening of the local moments gives rise to an enlargement of
the Fermi surface, a phenomenon that is well established both
theoretically [3, 4] and through Hall coefficient [5], quantum
oscillation [6], ARPES and STM measurements [7, 8]. The
large Fermi surface of a Kondo lattice is believed to partially
collapse when Kondo screening is disrupted [9–16] at an an-
tiferromagnetic (AFM) quantum critical point (QCP), a phe-
nomenon known as “Kondo breakdown” (KBD).

Recently, a number of experiments have observed a coin-
cidence of critical charge fluctuations at the magnetic quan-
tum critical points in CeRhIn5 [17] YbRh2Si2 [18] and β-
YbAlB4 [19]. Watanabe and Miyake have argued that the de-
velopment of soft charge fluctuations near a heavy fermion
QCP is likely a result of a quantum-critical end-point, in
which a first-order valence changing transition line is sup-
pressed to low temperatures [20–24]. Here we present an
alternative view, arguing that the coincidence of soft charge
fluctuations and Kondo breakdown is a natural consequence
of the Fermi surface collapse.

In the eighties, Anderson introduced the concept of a nom-
inal valence to distinguish the valence of a rare earth ion in-
fered from the apparent delocalization of f-electrons [25, 26],
from the core-level valence, infered from spectroscopy. From
this perspective, a shift in nominal valence is associated with
formation of a large Fermi surface, even in a strict Kondo lat-
tice where the core-level valence is fixed. Interpreted liter-
ally, this implies a kind of many-body ionization in the Kondo
lattice, in which a fractionalization of local moments into
charged heavy electrons, leaves behind a compensating pos-
itive background of Kondo singlets [27]. Taken to its logical
extreme, such an interpretation would then imply that at KBD
quantum critical point, degenerate fluctuations in the nominal
valence will give rise to an observable soft charge mode.

FIG. 1. (color online) (a) Model 1D Kondo lattice, with local mo-
ments (red) with an AFM Heisenberg coupling JH , individually
screened by separate conduction electron baths (blue wires). (b)
Schematic phase diagram showing the transition between heavy-
Fermi liquid (FL) and spin-liquid (SL) phases at a QCP which
evolves to a fan of strange metal (SM) at finite temperature. (c) Con-
duction electron phase shift δc as a function of TK/JH , which ex-
trapolates to a step-like jump from 0 to π/N as T → 0. (d) Color
map of entropy S(T ), showing the collapse of energy scales at the
QCP: the dashed line separates localized (∆ = 0 to the right) and
delocalized (∆ > 0 to the left) spinon regimes. Inset: temperature
cuts showing the accumulation of entropy at the QCP.

While Kondo Breakdown has been extensively modelled
at an impurity-level [28, 29] and simulated using dynamical
mean-field theory [10, 30, 31], a possible link with charge
fluctuations has not sofar been explored in the lattice. To ex-
amine this idea, we introduce a simple field-theoretic frame-
work for Kondo breakdown, emplying a Schwinger boson rep-
resentation of spins that permits us to treat Kondo screening
and antiferromagnetism [32, 33]. Early application of this
method demonstrated its efficacy for describing a ferromag-
netic quantum critical point [34] in a Kondo lattice. Here
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we consider a Kondo screened one dimensional (1D) AFM
[Fig. 1a], examining the quantum phase transition transition
between a spin-liquid and a Fermi liquid [Fig. 1(b)]. The con-
duction electron phase shift (related to the Fermi surface size)
jumps at T = 0, indicating that QCP is a KBD transition. Ad-
ditionally, we find that the KBD features a zero point entropy
[Fig. 1(d)]. In our calculations we observe that the KBD is
linked to the emergence of a gapless charge degree of free-
dom at the QCP which occurs in natural coincidence with a
divergent charge and staggered spin susceptibility.

The simplified 1D Kondo lattice is a chain of antiferro-
magnetically coupled spins each individually screened by a
conduction electron bath:

H =
∑
j

[
HC(j) + JK ~Sj · ~σj + JH ~Sj · ~Sj+1

]
. (1)

Here ~Sj is the spin at the j-th site, coupled antiferro-
magnetically to its neigbor with strength JH . HC(j) =∑

p εpc
†
pα(j)cpα(j) describes the conduction bath coupled to

the j-th moment in the chain, where p is the momentum of the
conduction electron. ~σj = ψ†jα~σαβψjβ is the spin density at
site j, where ψ†jα =

∑
p c
†
pα(j) creates an electron on the

chain at site j.
Global phase diagram - Numerical and experimental stud-

ies of heavy-fermion systems are often interpreted [10, 35, 36]
within a global phase diagram of the Kondo lattice, with two
axes: a Doniach parameter x = TK/JH [37], where TK is
the Kondo temperature, and a frustration parameter y repre-
senting the magnitude of quantum fluctuations, controlled by
geometrical or dimensional frustration. The 1D limit provides
a way to explore the two extremes of y: on the one hand,
the uniform magnetization of a 1D FM commutes with the
Hamiltonian and has no quantum fluctuations, corresponding
to y = 0 [34], whereas a 1D AFM never develops long range
order, loosely corresponding to y = ∞. When the magnetic
coupling is Ising-like, both models can be mapped to the dis-
sipative transverse-field Ising model. But a Heisenberg mag-
netic coupling has been proven to be difficult to treat with
these methods [38, 39] and a single formalism that can access
various phases and critical points is highly desirable.

The method is a large-N approach, obtained by enlarging
the spin rotation group from SU(2) to SP(N ), representing the
spin S local moments using Schwinger bosons (“spinons”),
according to Sαβ = b†αbβ − α̃β̃b

†
−βb−α[40, 41], where α ∈

[±1, · · · ±N/2], α̃ = sign(α) and nb(j) = 2S is the number
of bosons per site. Each moment is coupled to a K-channel
conduction sea, with Hamiltonian

H =
∑
j

[
HAFM (j) +HK(j) +HC(j) +Hλ(j)

]
, (2)

where

HAFM (j) = −(JH/N)(α̃b†jαb
†
j+1,−α)(β̃bj+1,−βbjβ),

HK(j) = −(JK/N)
(
b†jαψjaα

)
(ψ†jaβbjβ),

Hλ(j) = λj [nb(j)− 2S]. (3)

FIG. 2. (color online) (a) Calculated spectral function of spinons
G′′B(ω − iη) at T/TK = 0.03 shows confined spinons protected by
a gap in the FL and SL, and deconfined with with a soft excitation
gap in the SM regime. (b) Staggered spin susceptibilities vs. T/TK
for various various values of TK/JH from SL (in green) and FL (in
blue) passing QCP (in red). A log-divergence at the QCP is visible.

Here we have adopted a summation convention for the re-
peated greek α ∈ [±1,±N/2] spin and roman a ∈ [1,K]
channel indices. The Lagrange multiplier λj imposes the con-
straint nb(j) = 2S: we take 2S = K = 2sN for perfect
screening, where s is kept fixed.

We carry out the Hubbard-Stratonovich transformations:

HK(j)→
[
(b†jαψjaα)χja + h.c

]
+
Nχ̄jaχja
JK

(4)

HAFM (j)→
[
∆̄j(α̃b

†
j+1,−αb

†
j,α) + h.c

]
+
N |∆j |2

JH
,

where χja is a Grassmanian “holon” field that mediates the
Kondo effect at site j in channel a, while ∆j describes the
development of singlets between site j and j+1. See [34] For
a discussion of spurious 1st order transition and their remedy.

A mean-field RVB description of the 1D magnetism is ob-
tained from a uniform mean-field theory where ∆j = i∆B/2,
and λj = λ, giving rise to a bare spinon dispersion εB(p) =

[λ2 −∆2
p]

1
2 , with ∆p = ∆B sin p. Both b and χ fields have

non-trivial dynamics [32, 34, 42–44], with self-energies

Σχ(τ) = g0(−τ)GB(τ), ΣB(τ) = −γg0(τ)Gχ(τ). (5)

Here, γ = K/N = 2s and Gχ(τ), GB(τ) and g(τ) are the
local propagators of the holons, spinons and conduction elec-
trons, respectively. The conduction electron self-energy is of
order O(1/N) and is neglected in the large-N limit, so that
g0(τ) is the bare local conduction electron propagator. The
holon Green’s function Gχ(z) = [−JK−1 − Σχ(z)]−1, is
purely local, whereas the spinons are delocalized by the RVB
pairing with propagator GB(p, z) = [zτz − λ1 − ∆pτ

x −
�B(z)]−1. The self-energy −�B(z) is diagonal in Nambu
space, while the momentum sum in Gloc

B (z) =
∑
p GB(p, z)

can be done analytically [45].
Stationarity of the free energy with respect to λ enforces

the mean-field constraint 〈nb(j)〉 = K, and with respect to
∆B determines the relation ∆B(JH) [45]. We solve these
self-consistent equations numerically on the real-frequency
axis using linear and logarithmic grids.
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The two limits - In absence of Kondo screening (when
TK/JH is small) the constraint is satisfied with λ > ∆B .
This Schwinger boson model describes a bipartite spin chain,
in which each sublattice is in the symmetric spin-S represen-
tation of SP(N ) [40, 41]: Each spin can form singlets with its
neighbors in an RVB state for any value S. This, together with
the Gutzwiller projection treated by a soft constraint leads to a
U(1) gapped spin liquid [33], closely analogous to the integer-
spin Haldane chain [46]. A lattice with closed boundary con-
dition has a unique ground state and corresponds to a symme-
try protected topological phase [47].

The large TK/JH limit corresponds to a local Fermi liq-
uid [34, 44] at each site of the chain, in which the electrons and
spinons form bound, localized singlets, protected by a spectral
gap of the size TK ; the remaining electrons are scattered with
a phase shift δc = π/N . Fig. (1b) summarizes the phase dia-
gram as TK/JH is varied between the above two limits, which
we discuss in the following.

Ward identity, Entropy, Phase Shifts - At largeN , the many
body equations can be derived from a Luttinger Ward func-
tional, leading to an exact relation between the conduction
electron and holon phase shifts δc = δχ/N and a closed form
formula for the entropy [43, 44]. Fig. 1(c) shows the conduc-
tion electron phase shift Nδc/π as a function of TK/JH . In
the Fermi liquid, δχ = Nδc is equal to π, equivalent to a large
Fermi surface, but it is zero in the spin liquid regime. Extrap-
olating the calculations to T → 0, the phase shift appears to
jump at the QCP separating the spin-liquid (decoupled elec-
trons) and the Fermi-liquid. From the perspective of conduc-
tion electrons, both SL and FL phases are Fermi liquids and
the transition in δχ is a measure of change in the Fermi sur-
face, a manifestation of Kondo breakdown (KBD).

Entropy - Fig. 1(d) shows the colormap of the entropy
S(T ) across the phase diagram. The gray dashed line indi-
cates a second order phase transition for the internal variable
∆B that separates a local Fermi liquid (∆B = 0) from a de-
localized regime (∆B > 0). The collapse of the energy scale
from both sides are visible. Unlike the 1D ferromagnetic QCP
[34], the antiferromagnetic QCP develops a residual entropy
SE/N ≈ 1/20 at a spin of s = 0.1 per moment (inset of
Fig. 1d),

Magnetic excitations - Fig. (2a) shows the spinon spectrum
G′′B(ω − iδ) vs. TK/JH at T/TK = 0.03. Approaching the
transition from the Fermi liquid side (right), the spinon spec-
trum shifts to positive frequencies and, maintaining overall
gap size, brings the gap edge close to the chemical poten-
tial and only then, the hard gap closes at the QCP. Passing
through the critical point, the gap re-opens due to development
of short-range RVBs in the spin liquid regime. Fig. 2(b) shows
the temperature dependence of the staggered spin susceptibil-
ity χπ , which acquires a logarithmic temperature dependence
χπ ∼ − log T at the QCP. The Fermi liquid (blue) exhibits
a crossover from Curie law 1/T to a Pauli form 1/TK , with
a characteristic peak at T/TK ∼ 0.1. As TK/JH is reduced
the peak position is unchanged (unlike the 1D FM case [34])
whereas the low temperature susceptibility develops a loga-

FIG. 3. (a) Calculated spectrum of holons G′′χ(ω − iη) showing that
the holon mode crosses the chemical potential at the QCP. (b) ω/T
scaling of the holon Green’s function G′′χ(ω − iη) at the QCP. The
inset shows the holon mode before scaling. (c) TheO(1) charge ver-
tex of holons coupling them to potential fluctuations. (d) The charge
susceptibility computed via this vertex corrections (inset) shows a
T−1 divergence at the QCP point (red) and its suppression in SL/FL
sides.

rithmic divergence. Similar divergence is observed in local
spin susceptibility but the uniform susceptibility is only sup-
pressed by magnetism [45].

The holon spectrum - G′′χ(ω − iη) shows a striking be-
havior at the QCP (Fig. 3a). Most of the spectral weight is
contained in a sharp holon mode which crosses the chemical
potential as TK/JH is tuned from Fermi liquid (right) to spin-
liquid (left). In the critical regime at a finite temperature, the
holon mode is pinned to the Fermi energy over a finite range of
Doniach parameter, which shrinks to a point as T → 0, form-
ing a strange metal (SM) regime at finite temperature with
deconfined critical holon and spinon modes.

ω/T scaling - At the QCP, the holon mode lies at zero en-
ergy. Fig. 3(b) shows that the holon spectra at different tem-
peratures collapse onto a single scaling curve G′′χ(ω, T ) =
T−αf(ω/T ). For s = 0.1 we find α = 0.6 consistent with
a scaling analysis [45]. The universality class of the QCP ap-
pears to be that of an overscreened impurity model[32] , with
an effective number of channels Keff/N = (1/α − 1) ≈
0.67 > 2s.

The holon modes have an emergent coupling to the elec-
tromagnetic field, mediated via the internal vertices of the lat-
tice Kondo effect. In particular, the field theory implies an
O(1) vertex correction that couples to the electric potential
as shown in Fig. 3(c). At low energies the vertex can be ap-
proximated by Γχ = − d

dωΣχ. This quantity perfectly can-
cels the wavefunction renormalization of the holon propagator
Gχ ≈ Zχ/ω, where Zχ = −[∂ωΣχ]−1, so that the holon cou-
ples to the electric potential with a net charge ΓχZχ = +1.
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Fig. (3)(d) shows the charge susceptibility calculated using
this vertex corrections. At the QCP, the temperature depen-
dence of the holon charge susceptibilty acquires a Curie-like
temperature dependence χρ ∼ 1/T .

Discussion - We have studied a simplified Kondo lattice
model in the large-N limit, enabling us to extract the KBD
physics directly on a lattice. It is illuminating to note that
both specific heat and spin susceptibility [45] disagree with
the predictions of Hertz-Millis theories of the KBD based on
using hybridization as an order parameter [14, 15].

One of the striking features of our description of the KBD
quantum critical point is the presence of an emergent, spinless
critical charge mode with a Curie-like charge susceptibility.
Our model calculations can be extended in various ways, by
going to higher dimensions, by generalizing to the mixed va-
lence regime, and with considerable increase in computation,
to a model in which a single bath is shared between all mo-
ments. In the general Kondo lattice, the charge conservation
Ward identity links the change in the volume of the conduc-
tion electron Fermi surface ∆vFS to the charge density of the
Kondo singlets, described by the holon phase shift [43]

N
∆vFS
(2π)3

=

δχ/π︷ ︸︸ ︷∑
p

1

π
Im ln

[
−G−1

χ (p, z)

]
z=0+iδ

(6)

Quite generally, the holon phase shift is zero or π in the local-
ized magnetic, or Fermi liquid phases respectively, but must
jump between these two limits at the quantum critical point
establishing critical holons. This and the O(1) charge vertex
leads to critical charge fluctuations, independent of the de-
tails of the model. This strongly suggests that the gapless
holon excitions seen in our model calculation will persist at a
more general Kondo breakdown quantum critical fixed point.
Whether the Ward identity remains valid in models with re-
duced symmetry, is something we leave for future.

This raises the fascinating question how the predicted crit-
ical charge modes at KBD might be observed experimentally.
One mode of observation, is via the coupling to nuclear Moss-
bauer lines [48]. A recent observation of the splitting of
the Mossbaüer line-shape [19], characteristic of slow valence
fluctuations, may be a fingerprint of these slow charge fluctu-
ation.

Another interesting question is whether the residual en-
tropy of the QCP might survive beyond the independent bath
approximation. A residual ground-state entropy is a signature
of infinite-range entanglement, and has been seen in various
quantum models, such as the two channel Kondo model [49–
51] or the SYK model [52–54]. In the single-channel Kondo
problem, the Kondo screening length [55] ξK ∼ vF /T

eff
K

plays the role of an entanglement length-scale, beyond which
the singlet ground-state is disentangled from the conduction
sea. If the collapse of the Kondo temperature T eff

K → 0 at the
QCP of a Kondo lattice involves a divergence of the entan-
glement length ξK → ∞, the corresponding quantum critical
point would be expected to exhibit an extensive entanglement

entropy. Such naked quantum criticality is likely to be cen-
sored by competing ordered phases that consume the entan-
glement entropy of the critical regime, concealing QCP be-
neath a dome of competing phase, such as superconductivity.

Lastly, a peculiar feature of strange metals in heavy-
fermions is that the resistivity tends to be linear in T over a
wide range of tempreature. In quenched disordered models
it is possible [56] to derive such behavior from model calcu-
lations. One of the fascinating implications of a Curie-law
charge susceptibility χρ ∼ 1/T seen in our calculations, is
that if combined with a temperature-independent diffusion of
incoherent holon motion, it would give rise to a Curie conduc-
tivity (linear resistivity ρ ∝ 1/σ ∼ T ) via the Einstein relation
σ = Dχc ∼ 1/T , where D is the holon diffusion constant.
This raises the interesting possibility that linear resistivities
are driven by an emergent critical charge mode.
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[35] P. Coleman, C. Pèpin, Q. Si, and R. Ramazashvili, Journal of

Physics: Condensed Matter 13, R723 (2001).
[36] P. Coleman and A. H. Nevidomskyy, Journal of Low Tempera-

ture Physics 161, 182 (2010).
[37] S. Doniach, Physica B+C 91, 231 (1977).
[38] A. M. Lobos, M. A. Cazalilla, and P. Chudzinski, Phys. Rev. B

86, 035455 (2012).
[39] A. M. Lobos and M. A. Cazalilla, Journal of Physics: Con-

densed Matter 25, 094008 (2013).
[40] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
[41] R. Flint and P. Coleman, Phys. Rev. B 79, 014424 (2009).
[42] O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta, Phys.

Rev. B 58, 3794 (1998).
[43] P. Coleman, I. Paul, and J. Rech, Phys. Rev. B 72, 094430

(2005).
[44] J. Rech, P. Coleman, G. Zarand, and O. Parcollet, Phys. Rev.

Lett. 96, 016601 (2006).
[45] See supplementary material.
[46] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[47] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys.

Rev. B 81, 064439 (2010).
[48] Y. Komijani and P. Coleman, Phys. Rev. B 94, 085113 (2016).
[49] N. Andrei and C. Destri, Physical Review Letters 52, 364

(1984).
[50] A. M. Tsvelik and P. B. Wiegmann, Zeitschrift für Physik B

Condensed Matter 54, 201 (1984).
[51] A. W. Ludwig and I. Affleck, Nuclear Physics B 428, 545

(1994).
[52] S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
[53] A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63,

134406 (2001).
[54] J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016).
[55] I. Affleck, in Perspectives of Mesoscopic Physics, edited by

A. Aharony and E.-W. Ora (World Scientific, 2010) pp. 1–44,
0911.2209.

[56] O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

http://dx.doi.org/10.1103/PhysRevLett.118.117204
http://dx.doi.org/10.1103/PhysRevB.96.184524
http://dx.doi.org/10.7566/jpsj.82.083704
http://dx.doi.org/10.7566/jpsj.82.083704
http://dx.doi.org/10.7566/jpsj.83.061006
http://dx.doi.org/10.7566/jpsj.83.061006
http://dx.doi.org/10.7566/JPSJ.83.103708
http://dx.doi.org/10.7566/JPSJ.83.103708
http://dx.doi.org/10.1088/1742-6596/592/1/012087
http://dx.doi.org/10.1088/1742-6596/592/1/012087
http://dx.doi.org/10.1007/978-1-4757-1538-5_23
http://dx.doi.org/10.1016/j.physb.2007.10.312
http://dx.doi.org/10.1016/j.physb.2007.10.312
http://dx.doi.org/ 10.1103/PhysRevLett.109.086403
http://dx.doi.org/ 10.1103/PhysRevLett.109.086403
http://dx.doi.org/10.1103/PhysRevB.91.035118
http://dx.doi.org/10.1103/PhysRevB.91.035118
http://dx.doi.org/10.1103/PhysRevLett.101.256404
http://dx.doi.org/10.1103/PhysRevLett.101.256404
http://dx.doi.org/10.1103/PhysRevB.82.245105
http://dx.doi.org/10.1103/PhysRevB.82.245105
http://dx.doi.org/10.1103/PhysRevLett.79.4665
http://dx.doi.org/10.1103/PhysRevB.38.316
http://dx.doi.org/10.1103/PhysRevLett.120.157206
http://dx.doi.org/10.1103/PhysRevLett.120.157206
http://dx.doi.org/ 10.1088/0953-8984/13/35/202
http://dx.doi.org/ 10.1088/0953-8984/13/35/202
http://dx.doi.org/10.1007/s10909-010-0213-4
http://dx.doi.org/10.1007/s10909-010-0213-4
http://dx.doi.org/10.1016/0378-4363(77)90190-5
http://dx.doi.org/10.1103/PhysRevB.86.035455
http://dx.doi.org/10.1103/PhysRevB.86.035455
http://stacks.iop.org/0953-8984/25/i=9/a=094008
http://stacks.iop.org/0953-8984/25/i=9/a=094008
http://dx.doi.org/10.1103/PhysRevLett.66.1773
http://link.aps.org/doi/10.1103/PhysRevB.79.014424
http://dx.doi.org/10.1103/PhysRevB.58.3794
http://dx.doi.org/10.1103/PhysRevB.58.3794
http://dx.doi.org/10.1103/PhysRevB.72.094430
http://dx.doi.org/10.1103/PhysRevB.72.094430
http://dx.doi.org/ 10.1103/PhysRevLett.96.016601
http://dx.doi.org/ 10.1103/PhysRevLett.96.016601
http://dx.doi.org/ 10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.94.085113
http://dx.doi.org/10.1007/BF01319184
http://dx.doi.org/10.1007/BF01319184
http://dx.doi.org/10.1016/0550-3213(94)90365-4
http://dx.doi.org/10.1016/0550-3213(94)90365-4
http://dx.doi.org/10.1103/PhysRevLett.69.2411
http://dx.doi.org/10.1103/PhysRevB.63.134406
http://dx.doi.org/10.1103/PhysRevB.63.134406
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://dx.doi.org/10.1142/7680
http://arxiv.org/abs/0911.2209
http://dx.doi.org/10.1103/PhysRevB.59.5341

	Emergent critical charge fluctuations at the Kondo break-down of Heavy Fermions
	Abstract
	References


