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The collective motion of microswimmers in suspensions induce patterns of vortices on scales that
are much larger than the characteristic size of a microswimmer, attaining a state called bacterial
turbulence. Hydrodynamic turbulence acts on even larger scales and is dominated by inertial trans-
port of energy. Using an established modification of the Navier-Stokes equation that accounts for
the small-scale forcing of hydrodynamic flow by microswimmers, we study the properties of a dense
supension of microswimmers in two dimensions, where the conservation of enstrophy can drive an
inverse cascade through which energy is accumulated on the largest scales. We find that the dy-
namical and statistical properties of the flow show a sharp transition to the formation of vortices
at the largest length scale. The results show that 2d bacterial and hydrodynamic turbulence are
separated by a subcritical phase transition.

PACS numbers: 47.52.+j; 05.40.Jc

Thin layers of bacteria in their planctonic phase form
structures that are reminiscent of jets and vortices in
turbulent flows [1–3]. This state has been called “bac-
terial turbulence” [1] because of the shape and form of
the patterns, and has been seen in many swimming mi-
croorganisms [1–3] and active nematics [4–6]. Bacterial
turbulence usually appears on scales much smaller than
those of hydrodynamic turbulence, with its inertial range
dynamics and the characteristic energy cascades [7]. A
measure of this separation is the Reynolds number, which
is of order 10−4−10−6 for an isolated swimmer in a fluid
at rest [8] and typically several tens of thousands in hy-
drodynamic turbulence. Recent studies of the rheology
of bacterial suspensions have indicated, however, that the
active motion of pusher-type bacteria can lower consid-
erably the effective viscosity of the suspension [9–14], to
the point where it approaches an active-matter induced
“superfluid” phase where the energy input from active
processes compensates viscous dissipation [15, 16]. In
such a situation the collective action of microswimmers
can produce a dynamics that may be influenced by the
inertial terms. In two dimensions, a possible connection
to hydrodynamic turbulence is particularly intriguing be-
cause the energy cascade proceeds from small to large
scales and can result in an accumulation of energy at the
largest scales admitted by the domain, thereby forming
a so-called condensate [17–20]. If bacterial turbulence
can couple to hydrodynamic turbulence, then the inverse
cascade in 2d provides a mechanism by which even larger
scales can be driven. We here discuss the conditions un-
der which such a coupling between bacterial and hydro-
dynamic turbulence can occur.

A dense bacterial suspension consists of active swim-
mers in a solvent. It is generally described in terms of
coupled equations for the flow velocity of the suspension

and a polarization vector field that captures the coarse-
grained dynamics of the microswimmers. In most pre-
vious studies the fluid flow was slaved to the swimmer
dynamics, so that the equations focussed on the velocity
or polarization of the swimmers [21–23]. Here, following
recent work by S lomka and Dunkel [24, 25], we examine
instead the effective equation for the fluid flow, obtained
by slaving the swimmer velocity to the velocity of the
suspension [26]. Both approaches incorporate activity
via active stresses that provide a forcing in the dynami-
cal equations and yield minimal models that capture the
pattern-formation process associated with bacterial tur-
bulence [21, 24]. The effective Navier-Stokes equation for
the fluid introduced in Refs. [24, 25] bears a strong simi-
larity to models studied in the context of inertial turbu-
lence [27, 28], hence providing an excellent starting point
for examining the relation between bacterial and hydro-
dynamic turbulence.

These effective models have been compared with ex-
periments in Bacillus subtilis [2, 21, 25], and have
been widely used for investigating active turbulence [22–
25, 29–34]. In this Letter we study the connection be-
tween 2d bacterial and hydrodynamic turbulence system-
atically within a model that focusses on the suspension
flow and is, in that sense, independent of details of the
bacterial motion. We use the model of Refs. [24, 25], and
slightly modify its structure so that that we have a single
parameter that controls the strength of the bacterial forc-
ing. Increasing this parameter, we find a discontinuous
transition to flow states which are hydrodynamically tur-
bulent in the strict sense, that is, they display an inverse
energy cascade characterized by a scale-independent en-
ergy flux [7, 17, 35].

For the model [24, 25, 31], we take the velocity field
u to be incompressible, ∇ · u = 0, and periodic in a
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rectangular domain. The momentum balance is Navier-
Stokes like (with the density scaled to 1),

∂tu+ (u · ∇)u+∇p = ∇ · σ , (1)

where p is the pressure and σ the stress tensor. The
stress tensor contains three adjustable parameters Γi,

σij =
(
Γ0 − Γ2∆ + Γ4∆2

)
(∂iuj + ∂jui) , (2)

and is most conveniently discussed in Fourier space,
where the dissipative term in Eq. (1) can be used to in-
troduce an effective viscosity, ∇ · σ = νeff∆u, with

ν̃eff(k) = Γ0 + Γ2k
2 + Γ4k

4 , (3)

where ν̃eff is the Fourier transform of νeff . The first pa-
rameter Γ0 corresponds to the kinematic viscosity, and
Γ4 > 0 ensures that modes with large k are always
damped by hyperviscosity. If Γ2 < 0 and sufficiently neg-
ative, the effective viscosity becomes negative in a range
of wave numbers, thus providing a source of energy and
instability. This is the only forcing in the model, it cor-
responds to the mesoscale vortices observed in bacterial
turbulence, and without it all fields decay. In 2d and for
a suitable set of parameters statistically stationary states
with an inverse energy transfer from the band of forced
wave numbers to smaller wave numbers have been found
in variants of both minimal models [24, 36, 37]. The
energy spectrum in Ref. [24] showed a scaling exponent
close to the Kolmogorov value of −5/3, characteristic of
the constant-flux inverse energy cascade in 2d turbulence
[35]. Small condensates were observed in Refs. [36, 37].

In the stress model given by Eq. (3) Γ2 determines not
only the strength but also the range of wave numbers that
are forced. In order to eliminate this influence, we intro-
duce a variant of the model, where the bacterial forcing
is modeled by a piecewise constant viscosity (PCV) in
Fourier space. We take

ν̃(k) =


ν0 > 0 for k < kmin ,

ν1 < 0 for kmin 6 k 6 kmax ,

ν2 > 0 for k > kmax .

(4)

where ν0, like Γ0, is the kinematic viscosity of the sus-
pension and ν1 and ν2 > ν0 correspond to higher-order
terms Γ2k

2 and Γ4k
4, respectively, in the gradient expan-

sion of the active stresses in Eq. (3). That is, as in the
model of Refs. [24, 25], they arise from a linear relation
between the suspension flow and the bacterial forcing.
The latter is justified for dense 2d suspensions, where
both polarization and suspension velocity are solenoidal,
through a reduction in degrees of freedom [26]. With
this model, the forced wavenumbers are confined to the
interval [kmin, kmax] and the strength of the forcing is
controlled by ν1 < 0. In what follows we carry out a
parameter study of the PCV model where ν1 is the only
variable parameter.

N |ν1/ν0| ν2/ν0 kmin kmax Re U L

256 0.25-7.0 10.0 33 40 19-13677 0.29-7.77 0.07-1.92

1024 1.0 10.0 129 160 45 0.027 0.029

1024 2.0 10.0 129 160 226 0.041 0.094

1024 5.0 10.0 129 160 132914 1.17 1.93

TABLE I. Parameters used in DNSs of the piecewise con-
stant viscosity model and resulting observables. The num-
ber of grid points in each coordinate is denoted by N , the
viscosity ν0 and ν1, ν2, kmin, kmax are the parameters in
Eq. (4). The Reynolds number Re = UL/ν0 is based on ν0,
the root-mean-square velocity U and the integral length scale
L = 2/U2

∫∞
0
dk E(k)/k, with ν0 = 1.1 × 10−3 for N = 256

and ν0 = 1.7 × 10−5 for N = 1024. Averages in the statisti-
cally stationary state are computed from at least 1800 snap-
shots separated by one large-eddy turnover time T = L/U .

We solve the 2d PCV model in vorticity formulation

∂tω̃(k) + Fk[u · ∇ω] = −ν̃(k)k2ω̃(k) , (5)

where ω is the vorticity, ω(x1, x2)e3 = ∇×u(x1, x2), and
·̃ ≡ Fk[·] denotes the Fourier transform. The equations
are integrated in Fourier space, in a domain [0, 2π]2 with
periodic boundary conditions, and using the standard
pseudospectral method with full dealiasing according to
the 2/3rds rule [38]. The simulations are run without
additional large-scale dissipation terms, until a statisti-
cally stationary state is reached. As this can take a long
time, we used a resolution of 2562 collocation points to
explore the parameter space, and confirmed the results
for a few isolated parameter values with higher resolu-
tion, see Table I. Different resolutions can be mapped
onto each other using the invariance of Eq. (5) under the
transformation

x→ λx, t→ t, ν → ν

λ2
, u→ λu, ω → ω. (6)

For all simulations the initial data are Gaussian-
distributed random velocity fields.

A measure of the formation of large scale structures is
the energy at the largest scale, E1 ≡ E(k = 1), where

E(k) ≡
〈

1

2

∫
dk̂ |ũ(k)|2

〉
t

, (7)

with k̂ = k/|k| a unit vector, is the time-averaged energy
spectrum after reaching a statistically steady state. E1 is
shown as a function of the ratio |ν1/ν0| in Fig. 1, together
with typical examples of velocity fields. At low values
|ν1/ν0| 6 2 the energy at the largest scale is negligible
and the corresponding flows at |ν1/ν0| = 2 and |ν1/ν0| =
1 do not show any large-scale structure. At a critical
value |ν1,crit/ν0| = 2.06±0.02 a sharp transition occurs so
that for larger values of |ν1/ν0| a condensate consisting of
two counter-rotating vortices at the largest scales exists
(see the case |ν1/ν0| = 5 in Fig. 1, and Refs. [39–41]).
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FIG. 1. (Color online) Mean energy at the largest scale as a
function of ν1. The black, blue and red dots correspond to
cases |ν1/ν0| = 1 , |ν1/ν0| = 2 and |ν1/ν0| = 5, respectively,
and the corresponding visualisations show |u(x)|.

Since a condensate can only build up once the transfer
of kinetic energy reaches up to the largest scales, the
presence of a condensate is a tell-tale sign of an inverse
energy transfer.

For |ν1| � |ν1,crit|, we observe E1 ∼ ν2
1 , which can be

rationalized by mapping the large-scale dynamics onto an
Ornstein-Uhlenbeck process [42–45]. Neglecting small-
scale dissipation, Eq. (5) can formally be written as
∂tω = −ν0∆ωLS − ν1∆ωIN, where ωLS and ωIN are the
vorticity field fluctuations at scales larger and smaller
than π/kmin, respectively. For ωLS, this results in an
Ornstein-Uhlenbeck process with relaxation time 1/ν0

and diffusion coefficient ν2
1/2, because ωIN can be con-

sidered as noise on the time-scale of ωLS. Therefore,
E1 ' ELS ∼ ν2

1/ν0.

The transition and its precursors can be analyzed in
terms of energy spectra, shown in the top panel of Fig. 2
for three typical examples. As expected from the large-
scale pattern observed for the case |ν1/ν0| = 5, the cor-
responding energy spectrum shows the condensate as a
high energy density at k = 1. In the other two cases,
|ν1/ν0| = 1 and |ν1/ν0| = 2, the energy density tapers
off towards small wave numbers, and there is no conden-
sate. The spectra for k ≤ kmin follow power laws, with
exponents in the range set by energy equipartion where
E(k) ∼ k, and a Kolmogorov scaling, E(k) ∼ k−5/3,
as indicated by the solid lines in the figure. The spec-
tral exponent is known to depend on large-scale dissipa-
tion, if present [30], and on the presence of a conden-
sate [39]. For the case |ν1/ν0| = 1, the energy spec-
trum is E(k) ∼ k0.75, and close to the equipartition case.
With increasing amplification factor the spectral expo-
nent turns negative, with E(k) ∼ k−0.75 for |ν1/ν0| = 2
and E(k) ∼ k−1.2 for |ν1/ν0| = 5.

The occurrence of states close to absolute equilibrium

in the region k < kmin for weak forcing suggests the pres-
ence of a second transition to a net inverse energy transfer
for stronger forcing, as in the case |ν1/ν0| = 2. Although
the spectral exponent in this case suggests that energy
is transferred upscale, the absence of a condensate im-
plies that this energy transfer must stop before reaching
k = 1. The flux of energy across scale k in the statisti-
cally steady state can be measured with

Π(k) ≡ −
〈∫
|k′|≤k

dk′ ũ(−k′) · Fk′ [(u · ∇)u]

〉
t

. (8)

The sign of Π(k) is defined such that Π(k) < 0 corre-
sponds to an inverse energy transfer and Π(k) > 0 to a
direct energy transfer. As shown in Fig. 2, bottom panel,
the fluxes tend to zero as k tends to 1 for |ν1/ν0| = 1 and
|ν1/ν0| = 2, indicating that the inverse energy transfer is
suppressed by viscous dissipation close to kmin. In con-
trast, for |ν1/ν0| = 5, the flux Π(k) ' const., clearly
indicating an inertial range and hence an inverse energy
cascade in the strict sense, as expected for a hydrody-
namic energy transfer that is dominated by the inertial
term in the Navier-Stokes equations.

The transition shows up not only in the energy transfer
across scales, but also in the total energy balance. The
special form of Eq. (1) with the piecewise constant vis-
cosity as in Eq. (4) gives a balance between the energy

contained in the forced modes, EIN ≡
∫ kmax

kmin
dk E(k),

and the dissipation in the other wave number regions,

ε = 2ν0

∫ kmin

0
dk k2E(k) + 2ν2

∫∞
kmax

dk k2E(k). In a sta-

tistically stationary state ε ' 2k2
f |ν1|EIN, where kf =

(kmin +kmax)/2 corresponds to an effective driving scale.
Figure 3 presents the relation between ε and EIN, ob-
tained from simulations for different ν1. Statistically sta-
tionary states are obtained as crossings between ε(EIN)
(the symbols connected by continuous lines) and the equi-
librium condition ε ' 2k2

f |ν1|EIN, shown by dashed lines
for different ν1.

For small |ν1| the energy content in the forced wave
number range increases with |ν1|. However, as the trans-
fer to a wider range of wave numbers sets in dissipation
increases, and the energy EIN decreases (branch labelled
ε−). This is a smooth transition from absolute equilib-
rium to viscously damped inverse energy transfer. At the
critical forcing |ν1,crit|, both ε and EIN drop, and a gap
forms: the signal of the first-order phase transition. Fur-
ther increasing |ν1| results in even lower EIN, with only
small variations in ε, so that EIN ∼ |ν1|−1. In this region,
the dynamics cannot be dominated by the condensate.
Eventually, the condensate takes over the energy dissipa-
tion; the curve turns around to give ε ∝ E1 ∝ |ν1|2 and
EIN ∝ ε1/2 (branch labelled ε+). In this region, a strong
condensate will alter the nonlinear dynamics [39, 41] and
the characteristic Kolmogorov scaling of E(k) for 2d tur-
bulence disappears. Finally, the particular S-shape of the
curve shows that two non-equilibrium steady states cor-
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FIG. 2. (Color online) Energy spectra (top) and fluxes (bot-
tom) for three example cases |ν1/ν0| = 1 (black) , |ν1/ν0| = 2
(blue) and |ν1/ν0| = 5 (red) for N = 256 (dotted lines) and
N = 1024 (solid lines). The higher-resolved data has been
rescaled according to Eq. (6) to account for k → 4k. The
gray-shaded area indicates the interval [kmin, kmax], and the
solid lines in the top panel correspond to theoretical predic-
tions, i.e. energy equipartion: E(k) ∼ k, and Kolmogorov

scaling: E(k) ∼ k−5/3.

responding to the branches ε+ and ε−, respectively, can
be realised for the same value of the energy EIN in the
forced range. The existence of two stable branches con-
nected by an unstable region describes the bistable sce-
nario characteristic of a first-order non-equilibrium phase
transition.

In order to relate the numerical data to experimental
results, we now compare the Reynolds numbers and char-
acteristic scales involved in active suspensions and in our
simulations. For a suspension of B. subtilis, the char-
acteristic size of the generated vortices is about 100µm
with a characteristic velocity around 35− 100µm [1], re-
sulting in Revortex = O(10−2 − 10−3). Taking into ac-
count a possible reduction in viscosity down to a ‘su-
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FIG. 3. (Color online) Total mean dissipation rate as a func-
tion of the energy in the interval [kmin, kmax]. The dashed lines
indicate different values of the amplification factor. Error
bars indicate the standard deviation. The larger open sym-
bols in black, blue and red correspond to cases |ν1/ν0| = 1,
|ν1/ν0| = 2 and |ν1/ν0| = 5, respectively.

perfluid’ regime measured experimentally for Escherichia
coli [13], a Reynolds number regime of O(10) seems pos-
sible, provided the density of the suspension is not too
high. Larger microswimmers may lead to even higher
Reynolds numbers, with values of around 30 for mag-
netic spinners accompanied by Kolmogorov scaling of
E(k) [46], and 25 for camphor boats (C. Cottin-Bizonne,
private communication).

The forcing in our equations models the scale of such
vortices, so we need a corresponding Reynolds number
for the comparison between the model and potential re-
alizations. With kf = (kmin + kmax)/2 the center of the
forced modes, and EIN the energy in these modes, we
can define ReB =

√
EIN(π/kf)/ν0. Just above the criti-

cal point, we measure ReB ' 15. While these value are
still larger than the typical Reynolds number of active
suspensions, an experimental realization of the transition
seems within reach.

This comparison also gives relations for the length and
time scales. Setting the forcing scale to π/kf = 50µm,
the lattice with 2562 collocation points corresponds to a
box length of 3600µm, larger than the usual experimental
domain sizes. It is possible to detect the formation of the
vortices also in smaller domains, but then it will be diffi-
cult to extract scaling exponents for the energy densities
and the energy flux. For the time scales, the comparison
is more favorable, with the large-eddy turnover time T
and the characteristic timescale of the mesoscale vortices
Lbox/

√
EIN resulting in 0.4s 6 T 6 0.8s, and hence a

run time of 20− 40min for the different simulations. For
comparison, constant levels of activity in E. coli can be
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maintained for several hours [13].

The systematic parameter study of a hydrodynamic
model applicable to dense suspensions of microswimmers
presented here shows a sharp transition between spatio-
temporal chaos (bacterial turbulence) and large-scale co-
herent structures (hydrodynamic turbulence). The tran-
sition is preceded by a statistically steady state in which
a net inverse energy transfer is damped by viscous dissi-
pation at intermediate scales before reaching the largest
scales in the system. Above the critical point, a con-
densate forms at the largest scales and the energy flux
is scale-independent over a range of scales, i.e., the flows
in that parameter range are hydrodynamically turbulent.
A comparison between the driving-scale Reynolds num-
ber in our simulations and typical Reynolds numbers of
active suspensions suggests that it should be possible to
observe the transition to large scale coherent structures
also experimentally. Our results should be generic for
active systems where the forcing is due to linear ampli-
fication. For instance, we verified that also in the con-
tinuum model (Eq. (3)) the condensate forms suddenly
under small changes in forcing at similar Reynolds num-
bers as in the PCV model [26].

Finally, we note that in rotating Newtonian fluids,
transitions to condensate states have been observed as
a function of the rotation rate (Rossby number) [47–49].
This suggests that the appearance of a condensate may
be connected with a phase transition also in other flows.
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