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A simple nonlocal functional for calculation of dispersion energies is proposed. Compared to a
similar formula used earlier, we introduced a regularization to remove its singularities and used a
dynamic polarizability density similar to those in the so-called van der Waals density functionals.
The performance of the new functional is tested on dispersion energies for a set of representative
dimers and it is found that it is significantly more accurate than published nonlocal functionals.

Density functional theory (DFT) is the most popular
method for studying the electronic properties of matter
due to its reasonable accuracy relative to computational
costs. The exact form of a term in the DFT energy called
the exchange-correlation energy is unknown, and a large
number of approximations to this term have been con-
structed, in particular, the local density approximations
(LDA) [1–3] and the semilocal generalized-gradient ap-
proximations (GGA) [4–6]. All local or semilocal ap-
proximations are incapable of describing long-range cor-
relations of electron motions and hence fail to capture
dispersion interactions [7–10]. The van der Waals density
functional (vdW-DF) [11, 12] was designed to overcome
this problem and account for the nonlocal electron corre-
lation. It uses the plasmon-pole model of Lundqvist [13]
to build an approximate response function that can de-
scribe long-range collective behavior of an electronic sys-
tem and therefore describe dispersion interactions. The
vdW-DF model was further developed in several papers,
see for example Refs. [14–16]. This model is important
since it was derived from first-principles in contrast to
models fitted to interaction energies and long-range van
der Waals constants obtained from wave-function-based
calculations or from experiment (see, e.g., Refs. [17–20]).
Reference [10] argued that the latter methods work for
wrong reasons since they unphysically damp dispersion
energies at the region of van der Waals minima and for
shorter separations to cancel errors in DFT interaction
energies originating from physical effects unrelated to dis-
persion. The vdW-DF model can help to identify DFT
methods minimizing these errors, and in fact work in this
directions has been done [21–25].

An alternative approach is to start from the general-
ized Casimir-Polder formula for the second-order disper-
sion energy [26–28]
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where w(rij) = 1/rij = 1/|ri − rj | is the inverse
of interelectronic distance and χX , X = A,B, is the
density-density response function of system X at imag-
inary frequency iu. This response function can be
written in terms of the polarizability-density tensor

αijX(r1, r2, iu) [29, 30]
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where xki are the components of rk. If one assumes that
αijX can be approximated by a diagonal and local quan-
tity,

αijX(r1, r2, iu) = δij αX(r1, iu) δ(r1 − r2), (3)

where αX(r1, iu) is called the local polarizability density,
Eq. (1) becomes
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This expression is singular if αA and αB overlap, which
shows how drastic the approximation of Eq. (3) is. Never-
theless, this expression was proposed by Anderson, Lan-
greth, and Lundqvist (ALL) [31] and, independently, by
Dobson and Dinte [32]. Since the derivations in these ref-
erences are indirect, we present a straightforward deriva-
tion in Supplementary Materials (SM) [33]. In applica-
tions of Eq. (4), one had to assume that αA and αB do
not overlap, which is a reasonable assumption only for
very large intermonomer separations.

To eliminate the singularity, we introduce a damping
function in the integral (4)
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where f8(β, r12) is a generalized Tang-Toennies (TT)

damping function [34], f8(β, x) = 1 − e−βx
∑8
i=0

(βx)i

i! ,
with the short-range behavior limx→0 f8(β, x)/(βx)6 =
(βx)3/(9!). This function removes the singularities and
damps the energy at short separations. We call the re-
sulting quantity the damped asymptotic dispersion en-
ergy (DADE). The rationale for including the damping
originates from the fact that, as shown in SM, at large
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separations between monomers expression (4) gives the
leading term in the asymptotic expansion of dispersion
energy. This expansion results from the multipole expan-
sion of the interaction potential which is valid only in the
region where charge distributions do not overlap, analo-
gously to expression (4). For smaller separations, the
multipole expansion has to be replaced by the so-called
bipolar expansion of the interaction potential, resulting
in functions damping the 1/Rn terms (for a discussion
of these issues, see Ref. [35]). Thus, it is a reasonable
assumption that expression (4) should include damping
as well. The TT function is a widely used model for such
damping, derived to satisfy several physical conditions.

The polarizability density is related to the so-called po-
larization S-function used in van der Waals density func-
tionals: α(r1, iu) = 1/4π

∫
d3r2 S(r1, r2, iu) [36]. The

formula for the S-function assumed in Ref. [11] leads to
the following expression for the local polarizability den-
sity [37, 38]:
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, (6)

where n(r) is the electron density and ω0(r) is a local
excitation frequency. This frequency was assumed in
Ref. [11] in the form
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where kF(r) = [3π2n(r)]1/3 is the length of the Fermi
wave vector, εLDA

c (r) is the LDA correlation energy den-
sity, and Zab is a parameter which was interpreted in
Ref. [11] as originating from screened exchange. The ex-
citation frequency ω0 is a special value of a more general
function ωq(r) defined in Ref. [11]: ω0(r) = ωq(r)

∣∣
q=0

.

The choice of ω0(r) given by Eq. (7) ensures that the
polarizability density decays like n(r)7/3 which leads to
finite static polarizabilities and avoids nonphysical con-
tribution from low density regions present in ALL. Using
α(r, iu) given by Eq. (6) in Eq. (5) and integrating over
frequency, we get
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Thus, we end up with an expression for the dispersion
energy which requires only a six-dimensional integration
as compared to the thirteen-dimensional integration in-
volved in Eq. (1). The parameter Zab has been chosen to
have the value between those used in vdW-DF1 [11] and

vdW-DF2 [12], i.e., Zab = −1.1972. The function β(r12)

has been chosen of the form β(r12) = β0 + β1 e
−β2r

2
12 ,

where β0 = 1.70, β1 = 1.90, and β2 = β0/10. The val-
ues of Zab and βi were roughly adjusted to achieve the
best agreement with dispersion energies from symmetry-
adapted perturbation theory (SAPT) based on DFT de-
scription of monomers [SAPT(DFT)] [27, 28, 39, 40] for
the argon dimer. These choices are universal, i.e., do not
depend on the interacting systems. Notice that the non-
empirical SCAN functional [41] also uses Ar2 data [42]
to fit its parameters. Thus, the DADE approach is non-
empirical in this sense, as is the vdW-DF approach and
both approaches are based on sound physics. Therefore,
we will compare the performance of DADE to that of
vdW-DF, rather than to that of heavily fitted methods
that represent dispersion energies as sums of atom-atom
interactions.

To perform the integration over r1 and r2 in Eq. (8),
we rewrite this equation as

EDADE
disp =− 3
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and use Becke’s atomic partitioning scheme [5] to numer-
ically evaluate the integral using grids centered on atoms

EDADE
disp = −3

2

∑
a∈A

∑
b∈B

∑
i,j

∆3rai ∆3rbj

× W a(rai )W b(rbj)F (rai , r
b
j), (10)

where W c is Becke’s atomic weight for atom c and ∆3rci
is the volume of the grid cell at the grid point rci . This
point is defined as rci = Rc+ri, where Rc is the position
of atom c and ri belongs to the grid centered at Rc.
The integration grid for electron 1(2) can be restricted
to the atoms of molecule A(B) since the density nA(nB)
in Eq. (8) is well represented on such a grid. The spatial
integration is performed using the Euler-Maclaurin [43]
radial grid and the Lebedev [44] angular grid with 75
and 302 points, respectively.

To test the performance of our method, we chose
the dimers from a recent blind test of DFT-based
methods for calculation of interaction energies [45] and,
in addition, the argon dimer and the Ar-HF dimer.
For all dimers, several values of the intermonomer
separations R are included, probing the intermolecular
interaction from the asymptotic separations, through
the van der Waals minimum region, to the repulsive
wall. This benchmark is therefore more adequate than
some often used benchmarks limited to the van der
Waals minimum separations. The benchmark dispersion
energy Edispx is the sum of the second order dispersion
and exchange-dispersion energies from SAPT(DFT).
The benchmark interaction energies are CCSD(T) values
in the complete basis set (CBS) limit. The SAPT(DFT)
and CCSD(T) calculations for the argon dimer and
Ar-HF were performed in the present work using the
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Figure 1. Ratios of the approximate dispersion energies from DADE and vdW-DF2 to SAPT(DFT) benchmarks for
ethylenedinitramine dimer (top-left), methylformate dimer (top-right), nitrobenzene dimer (bottom-left), and benzene-methane
(bottom-right). The vertical lines indicate the separations of the van der Waals minima. The inserted molecular graphs have
white, gray, blue, and red spheres representing hydrogen, carbon, nitrogen, and oxygen atoms, respectively.

Table I. MAPEs of dispersion energies for the investigated
dimers with respect to the benchmark dispersion energies
Edispx.

DADE disp(vdW-DF2)

Argon dimer 9.55 26.98
Ar-HF 6.86 23.56
Water dimer 15.03 29.40
Ethanol dimer 6.77 25.96
Nitromethane dimer 10.52 26.31
Methylformate dimer 6.85 29.20
Benzene-methane 6.58 28.75
Benzene-water 9.06 17.14
Imidazole dimer 24.89 42.10
Nitrobenzene dimer 7.82 23.05
FOX-7 dimer 27.68 42.08
EDNA dimer 11.55 30.14
average of MAPEs 11.93 28.72

same methodology as in Ref. [45] and the ORCA
codes [46], while for all the remaining systems the values

were taken from Ref. [45]. Note that while CCSD(T)
benchmarks are at CBS limits, SAPT(DFT) quantities
are computed in an augmented triple-zeta quality basis
set with midbond functions [45]. In Ref. [10], we have
shown that the uncertainty of the SAPT/CBS dispersion
energies is 1%. For Ar2 at the van der Waals minimum,
our SAPT(DFT) dispersion energy is only 0.3% different
from the SAPT/CBS value. Thus, we conservatively
estimate that the SAPT(DFT) dispersion energies have
couple percent uncertainties, a sufficient accuracy for
the comparisons made here. The systems taken from
Ref. [45] have 80 data points while for the Ar2 and
Ar-HF we used 20 more points making the total number
of points 100. The comparison of the interaction energies
is done, as in Ref. [45], by calculating the median values
for the absolute percentage errors (MedAPE) so that
the large relative differences with the benchmarks close
to the points where interaction energy curves go through
zero do not affect the whole picture. The dispersion
energy does not have this problem and, therefore, we
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Table II. MedAPEs of interaction energies for the investigated
dimers with respect to the benchmark interaction energies.

dlDF+DADE dlDF+disp(vdW-DF2)

Argon dimer 11.99 29.52
Ar-HF 8.16 21.58
Water dimer 1.47 1.51
Ethanol dimer 5.74 14.52
Nitromethane dimer 11.25 8.68
Methylformate dimer 1.08 10.54
Benzene-methane 8.15 35.61
Benzene-water 3.86 10.31
Imidazole dimer 4.79 5.67
Nitrobenzene dimer 13.25 3.82
FOX-7 dimer 7.98 7.03
EDNA dimer 6.79 1.38
average of MedAPEs 7.04 12.51

compare the mean absolute percentage errors (MAPE)
in this case. The calculations for DADE and vdW-DF2
are done using a code written by us which is available at
http://www.physics.udel.edu/∼szalewic/DADE-1.0.
The coefficients of molecular orbitals were calculated
using ORCA [46] with PBE [6] functional and the
aug-cc-pVTZ [47–49] basis sets. The dispersion energy
given by the vdW-DF2 method, disp(vdW-DF2), is cal-
culated by subtracting the nonlocal correlation energies
of monomers from the nonlocal correlation energy of
the dimer. These energies are counterpoise corrected
as all calculations are done in the same basis as for the
dimer [50].

Table I shows that the MAPE values given by DADE
relative to Edispx are significantly better than those of
disp(vdW-DF2) for all systems and the average MAPE
is 12% for DADE while it is 29% for disp(vdW-DF2).
The MAPE for disp(vdW-DF1) is 49%, so much worse
performance that we will not discuss this method further
on (recall that the two versions differ only by the value of
the parameter Zab). Figure 1 compares the performance
of DADE and disp(vdW-DF2) by plotting their ratio to
Edispx as function of the separations R for the EDNA
dimer, methylformate dimer, nitrobenzene dimer, and
benzene-methane. DADE outperforms disp(vdW-DF2)
at almost all Rs, in particular at small Rs and in the
asymptotic region. The better performance in the
asymptotic region means improved C6 dispersion coef-
ficients. Also for the remaining dimers, DADE agrees
better with Edispx than disp(vdW-DF2) at majority of
R values, see SM. It is remarkable that DADE performs
so well since it is an extension of an asymptotic method
whereas disp(vdW-DF2) is formulated for an arbitrary
separation.

If small selfconsistency effects are neglected, the in-
teraction energy of methods including nonlocal function-
als is the sum of an interaction energy from a stan-

dard semilocal density functional (which we call the base
functional) and of a contribution from an actual non-
local functional. The vdW-DF1 method used revPBE-
PW92 [3, 6, 51] as the base functional, whereas vdW-
DF2 replaced the exchange part by rPW86 [21, 52]. Sev-
eral later papers paired the nonlocal part of vdW-DF
with different base functionals (see, e.g., Refs. [22–25]).
The large errors of disp(vdW-DF1) and disp(vdW-DF2),
which were apparently not recognized, had to be can-
celled by the base functionals. Since DADE gives sig-
nificantly more accurate dispersion energies, it should
be possible to greatly reduce the reliance on error can-
cellation. We have not tried to pair various base func-
tionals with DADE, but calculated the total interaction
energies for the investigated systems by adding the dis-
persion energies from DADE and disp(vdW-DF2) to the
interaction energies given by the dispersionless density
functional (dlDF) [53]. We denote the resulting ener-
gies as dlDF+DADE and dlDF+disp(vdW-DF2). Since
DADE recovers true dispersion, it can be added only
to interaction energies computed by density functionals
such as dlDF which was optimized to exclude dispersion
interactions [53]. The dlDF functional should also be a
reasonable choice for disp(vdW-DF2) as the authors of
Refs. [11] and [12] paired vdW-DF nonlocal terms with
functionals which give interaction energies close to the
HF ones which are dispersionless. The pairing of DFT
functionals with dispersion energies has been recently dis-
cussed by the present authors in Ref. [10]. The dlDF
energies for the argon dimer and Ar-HF were calculated
using the Gaussian [54] package while for all the remain-
ing systems the dlDF values were taken from Ref. [45].
These energies are counterpoise corrected [50].

Table II shows that for the majority of systems
MedAPEs given by dlDF+DADE are better than
those of dlDF+disp(vdW-DF2). The average of
MedAPEs for dlDF+DADE, 7.0%, is smaller than for
dlDF+disp(vdW-DF2), 12.5%, by a factor of 1.8, while
the dispersion energies from DADE have the average of
MAPEs 2.4 times smaller than that of disp(vdW-DF2).
The dlDF+DADE also has a relatively narrow spread of
MedAPEs: 1.1% to 13.3%, whereas for dlDF+disp(vdW-
DF2) the spread is 1.4% to 35.6%. One should note that
the set of systems in the blind test of Ref. [45] was inten-
tionally chosen to be a blend of systems encountered in
typical investigations of intermolecular forces. Therefore,
for all dimers the dispersion effects are relatively small
at large R, except for benzene-methane. For this system,
the MedAPE of dlDF+DADE is 4.4 times smaller than
that of dlDF+disp(vdW-DF2). Similarly large ratios are
found for Ar2 and Ar–HF which are dispersion dominated
at large R. Thus, for systems of this kind improvements
of accuracy resulting from using DADE should be par-
ticularly large.

In Ref. [45], dlDF was paired with an accurate
atom-atom dispersion functions Das from Ref. [55] and
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disp(vdW-DF2) was paired with the rPW86 exchange
functional [21] and the P86 correlation functional [56].
The averages of MedAPEs from Ref. [45] (denoted as
MUPEs there), on the set not including Ar2 and Ar-
HF, were 6.46% and 11.96% for dlDF+Das and rPW86-
P86+disp(vdW-DF2), respectively. On this reduced set
of dimers, dlDF+DADE and dlDF+disp(vdW-DF2) give
6.44% and 9.91%, respectively. Thus, DADE works as
well as Das when paired with dlDF, whereas disp(vdW-
DF2) works better when paired with dlDF than when
paired with rPW86-P86. [Note that Ref. [45] also used
MedAPEs defined as the median absolute percentage er-
rors for the whole set of data and such errors tend to be
smaller than averages of MedAPEs. We have not used
the former since they tend to place too much weight on
the performance in the asymptotic region.]

To put the current results in a broader perspective, we
can compare the performance of dlDF+DADE on the set
of Ref. [45] discussed above to that of DFT+D methods
which apply models fitted to ab initio interaction ener-
gies (many other papers discussed the performance of
the latter models, see, e.g., Refs. [57–62]). Among such
DFT+D methods investigated in Ref. [45], B3LYP-D3
performed best, giving the average of MedAPEs equal
to 5.19%, i.e., this performance is not significantly bet-
ter than 6.44% of dlDF+DADE. Other DFT+D methods
gave results in the range 6.08%–7.97%. Thus, the devel-
opment of DADE brings first-principle dispersion func-
tionals into the accuracy realm of best fitted DFT+D
methods.

In summary, we present a new nonlocal correlation en-
ergy functional that provides significantly better disper-
sion energies on the set of benchmarks used than any
published nonempirical nonlocal functional. The DADE
method for calculations of dispersion energies has the
important advantage of resulting from a straightforward
derivation. This is in contrast with the vdW-DF method
which uses many approximations that are difficult to jus-
tify. In fact, as Dobson and Gould [63] wrote “a complete
and self-contained derivation of this functional seems to
be lacking in the literature”. Since the straightforward
DADE approach performs so much better than vdW-DF,
this may indicate that some of these approximations are
not working well. DADE is also computationally at least
as effective as vdW-DF. Both functionals can be consid-
ered nonempirical in the sense that no fitting to a large
number of benchmarks was involved. In both functionals,
the parameter Zab was adjusted, in DADE the parame-
ters of the function βi were adjusted as well. DADE
gives significantly better dispersion energies and, paired
with dlDF, interaction energies than vdW-DF2, the most
widely used nonlocal density functional. Thus, the use
of DADE should significantly improve the accuracy of
nonlocal functional approaches.
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