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Gravitational-wave data analysis is rapidly absorbing techniques from deep learning, with a focus
on convolutional networks and related methods that treat noisy time series as images. We pursue an
alternative approach, in which waveforms are first represented as weighted sums over reduced bases
(reduced-order modeling); we then train artificial neural networks to map gravitational-wave source
parameters into basis coefficients. Statistical inference proceeds directly in coefficient space, where
it is theoretically straightforward and computationally efficient. The neural networks also provide
analytic waveform derivatives, which are useful for gradient-based sampling schemes. We demon-
strate fast and accurate coefficient interpolation for the case of a four-dimensional binary-inspiral
waveform family, and discuss promising applications of our framework in parameter estimation.

PACS numbers: 02.50.Tt, 02.60.Gf, 04.30.-w, 04.80.Nn, 95.55.Ym

Introduction. Statistical inference is the eyepiece of
gravitational-wave (GW) observatories: it maps the
noise-dominated detector output into probabilistic as-
sessments of candidate significance, and into posterior
probability densities for the physical parameters of con-
firmed detections [1]. The mathematical setup of GW
data analysis is simple, with most of its salient features
apparent in the classical time-series likelihood

L(θ) := p(x|θ) ∝ exp
{
− 1

2 〈x− h(θ)|x− h(θ)〉
}
. (1)

Here x is the detector output, h is the modeled detector
response to an incoming GW with source parameters θ,
and 〈·|·〉 is the (complex) noise-weighted inner product

〈a(t)|b(t)〉 := 4

∫ ∞
0

df
ã∗(f)b̃(f)

Sn(f)
, (2)

with tildes denoting Fourier transforms and Sn the one-
sided power spectral density of detector noise n [2]. Eq.
(1) essentially describes n as Gaussian and additive, with
the sampling distribution p(n) ∝ exp{−〈n|n〉2/2}.

The challenges in using (1) for detection and parameter
estimation are entirely practical. Detector physics poses
issues such as noise characterization and response calibra-
tion; these are addressed by validating sample statistics
with background studies, and including detector param-
eters during inference (e.g., [3, 4]). On the astrophysics
side, the relativistic nature of many sources makes them
computationally expensive to model, which hinders the
bulk generation of accurate waveform templates for use
in data-analysis algorithms. Furthermore, the nonlin-
ear parameter dependence of such waveforms introduces
complex features into the likelihood hypersurface (except
at very high signal-to-noise ratios), making it difficult to
map out with deterministic or stochastic methods.

In this Letter, we propose a general framework that
combines order-reduction and machine-learning tech-
niques to tackle these last two problems in unison, and
to connect GW source modeling and data analysis in a

natural and integrated manner. Our approach involves
the construction of a fully representative reduced basis
for the signal space of a GW model [5], and the fitting
of a deep neural network to this parametrized manifold.
The resultant function over parameter space is an an-
alytic waveform in reduced representation; this enables
the efficient generation of signal templates, and further
allows the casting of the likelihood (1) in an equivalent
reduced form. Also derived during the training of the
network are the Jacobian and higher derivatives of the
function, which encode the geometry of the signal man-
ifold and can be used in derivative-based samplers for
improved exploration of the likelihood hypersurface.

As a proof of principle, we present example results
for a four-parameter post-Newtonian model of the GW
signal from an inspiraling black-hole binary [6], which
demonstrate the feasibility of our approach for higher-
dimensional problems. A variety of network architec-
tures are trialled to ensure the general premise is sound.
The waveform error from fitted networks approaches (to
within an order of magnitude) the error in reduced-order
surrogate models [7–12], and several strategies for attain-
ing even better accuracy are outlined. We showcase the
speed and robustness of our networks on a number of
derivative-based applications for parameter estimation,
and discuss possible extensions of the framework.

Reduced-order modeling. Order-reduction strategies
[13] are employed in GW source modeling and data anal-
ysis to represent waveform observables as linear combi-
nations of reduced-basis vectors [5, 14]. Unlike standard
transforms, the reduced-order modeling (ROM) approach
is model-specific and involves building a finite, optimally
compact basis whose span is essentially the full model
space (to machine precision). This reduced basis is pre-
pared offline (i.e., in advance of its use in data analysis)
by means of a greedy algorithm [15] that distills a large
set of training templates into a smaller orthonormal set
of vectors. Any waveform in model space can be recon-
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structed via projection onto the basis vectors, which are
themselves linear combinations of training templates.

For a GW model h(θ) parametrized by θ ∈ Θ ⊂ Rs,
the ROM approach can be used to cast the signal space
S := h[Θ] in terms of a d-dimensional reduced basis {ei}
with 〈ei|ej〉 = δij ,

1 such that S is isomorphic to an s-
dimensional manifold embedded in Cd. Through projec-
tion of the signal templates onto {ei}, we may write

h(θ) =
∑
i

〈h(θ)|ei〉ei :=
∑
i

αi(θ)ei ≡ α(θ), (3)

with α ∈ Cd. The signal-to-noise ratio (SNR) for a tem-
plate is given by ρ := 〈h|h〉1/2 = (α†α)1/2 := |α|. It is
convenient to work with normalized templates such that
|α| = 1; for some “true” signal h(θ∗) with arbitrary SNR
ρ∗, we then have h(θ∗) ≡ ρ∗α(θ∗).

The computational efficiency of reduced-order surro-
gates [7–11] stems from the dimensionality d of the ba-
sis {ei} being small compared to the typical size r of
the standard time-series representation h; the linearity
of {ei} with respect to the inner product (2) can also
be exploited to accelerate likelihood evaluations, through
the method of reduced-order quadratures [16, 17]. How-
ever, all of these benefits rely on being able to obtain (for
arbitrary source parameters θ) the basis projection coef-
ficients α(θ) without computing the full waveform h(θ)
itself. Present applications make use of empirical interpo-
lation [18], which requires h to be evaluated (or approxi-
mated) only at a set of d time/frequency nodes that are
uniquely defined by the reduced basis. Direct interpo-
lation of α across parameter space remains challenging,
except in low-dimensional (s . 3) problems.

Artificial neural networks. The deep-learning
paradigm encompasses a family of machine-learning
techniques that automatically discover and process
“features” in data, without the need for task-specific
algorithms [19]. Most methods in deep learning are
based on variants of artificial neural networks (ANNs) —
biologically inspired computational objects comprising
multiple layers of nonlinear processing nodes between
the input to the network and its output. Within GW
data analysis, ANNs trained under supervision (i.e.,
using data structured in the form of input–output pairs
[20]) are potential “black-box” alternatives to more
statistically principled methods based on Eq. (1), and
they have recently been shown to achieve promising
performance in detection and classification tasks [21–27].

ANNs are also well known to be universal approxima-
tors [28] for continuous functions: given an appropriate

1 The reduced basis is orthonormal with respect to the specified
noise power spectral density Sn in (1); for a different Sn such
that 〈ei|ej〉 = Nij , pre-multiplying all coefficient vectors by the
whitening matrix W (where W †W = [Nij ] is obtained through,
e.g., Cholesky decomposition) restores orthonormality.

learning strategy and properly structured training data, a
network of sufficient depth can interpolate between train-
ing examples to a high level of accuracy. In this Let-
ter, we demonstrate that ANNs are in principle suited to
the high-dimensional interpolation problem posed by the
ROM projection coefficients. We design networks that
take θ as their input, and output α̂(θ) (where the over-
hat is used here and henceforth to denote an interpolated
estimate). These are fitted to a large set of training pairs
{θn, α(θn)} chosen to adequately represent the domain
of interest Θ; goodness of fit is then evaluated on a small
test set of examples that are held out from the train-
ing stage. The result is a function α̂(θ) ≈ α(θ) that is
both fully analytic and computationally efficient, as it is
composed of (many) closed-form array operations.

Convolutional-type network architectures [29] have be-
come the dominant model in deep learning, due to high-
profile successes in applications such as computer vision
[30] and natural language processing [31]. They leverage
spatial correlations in high-resolution data to lower the
number of free parameters in the network, which in turn
reduces overfitting. However, our investigations with de-
convolutional neural networks [32] indicate that they are
less suited to the ROM interpolation problem; here train-
ing data is abundant, and underfitting is more of an issue.
This is because ROM coefficient data has already been
pared down to its principal features, and in its present
vector form cannot be organized spatially (although this
might be possible with tensor decompositions/networks
[33]). The low resolution (d ∼ 102) of the data makes
it more amenable to the “fully connected” layers in a
multilayer perceptron [34], which are individually faster
than convolutional layers at low width, and hence can be
stacked to great depth for increased network capacity.

In our multilayer perceptron networks, the input layer
θ and output layer α̂ are connected by a sequence of “hid-
den” layers, each parametrized by a matrix of weights w
and a vector of biases b. The `-th hidden layer takes an
input a`−1 from the previous layer, and outputs to the
next layer the value a` = a(w`a`−1 +b`) of a closed-form,
nonlinear “activation” function a. Values of the weights
and biases that minimize a suitably defined loss of fi-
delity L in the output are learnt during the training stage,
where the loss gradient ∂L/∂(w, b) is obtained through
a backpropagation algorithm [35] and used iteratively in
gradient descent optimization. ANNs can also be used to
compute the analytic derivatives ∂nα̂/∂θn as functions
of (w, b) (for n− 1 up to the differentiability class of a);
these converge to the target derivatives ∂nα/∂θn with no
added computational expense as the network is trained.

The reduced likelihood. We now consider the basic
case where the data x in (1) is the sum of a single true sig-
nal h(θ∗) and the detector noise n. Projecting the data
onto the reduced basis {ei} as in (3) gives x ≡ β + γ;
here the reduced-space term β = ρ∗α(θ∗) + ν contains
the true signal template α(θ∗) and a noise component
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FIG. 1. Starting with a reduced basis built from 256 train-
ing points distributed uniformly over an extended domain, we
draw up to 20 more training points from the kernel density
estimate of the basis points at each iteration (red points, pro-
jected onto the (Mc, η)-plane), and construct a new basis. A
final basis representation error of . 10−14 over the domain
of interest (red border) is attained with only ∼ 103 training
points, which is far more efficient than grid-based training.

ν ≡
∑

i〈n|ei〉ei, while the orthogonal term γ = x − β is
the projection of n onto the orthogonal complement of
S. In this representation, the likelihood (1) becomes

L(θ) ∝ exp
{
− 1

2 |β − α(θ)|2 − 1
2 |γ|

2
}
,

∝ exp
{
− 1

2 |β − α(θ)|2
}
, (4)

since the orthogonal noise γ does not depend on θ.
Eq. (4) corresponds to the trivial probability model

ν ∼ N (0, Id) for detector noise in the reduced space Cd,
and retains the statistical properties of Eq. (1). Compu-
tation of the θ-dependent terms β†α(θ) and |α(θ)|2 in
(4) is an O(d) operation, as compared to O(r � d) for
〈x|h(θ)〉 and 〈h(θ)|h(θ)〉 in (1) (where r is the number of
frequency-series samples).2 With the efficient generation
of α̂(θ) provided by a neural network, and the explicit
reduction of complexity r → d in the reduced likelihood
(4), much of the computational cost associated with on-
line likelihood evaluations can thus be shifted into the
offline construction of the reduced basis and ANN inter-
polant. If so desired, extrinsic parameters such as ampli-
tude or time of arrival can still be handled analytically,
as is customary in the GW literature [36].

Example results. In this work, we apply our approach
to a 2.5PN TaylorF2 waveform family [6]. This analytic
frequency-domain model describes the GW signal from
an inspiraling black-hole binary with aligned spins, and
is parametrized by the component masses m1,2 and di-
mensionless spins χ1,2. We consider signals with r = 104

frequency samples over the range [1, 10] mHz, and a pa-
rameter domain defined by m1,2 ∈ [1.25, 10] × 105M�

2 The reduced likelihood (4) shares the start-up cost of projecting
the data with the reduced-order quadrature method [16, 17], but
there the cost of the template–template term scales as O(d2).

and χ1,2 ∈ [−1, 1]; these choices correspond to a subset
of the high-redshift massive-black-hole binaries that will
be observed by the space-based GW detector LISA [37].

Working in the more natural mass parametrization of
chirp mass Mc and symmetric mass ratio η [38], we con-
struct a reduced basis for the above model, but over
an extended domain with m1,2 ∈ [0.5, 15] × 105M� and
χ1,2 ∈ [−1.5, 1]. This facilitates a new high-dimensional
ROM training strategy [39] that iteratively builds up a
kernel density estimate for the parameter-space distribu-
tion of templates selected by the greedy algorithm; in
the present model, these tend to cluster at the low-mass
and negative-spin boundaries (see Fig. 1). A subset of
the extended domain is also used in the training of the
ANNs, where compensating for the added structure helps
to improve accuracy in the domain of interest. For the
four-dimensional model, the size of the reduced basis is
d = 241. A smaller basis is derived for the non-spinning
two-dimensional submodel over the same range of masses.

Instead of interpolating α(θ) ∈ Cd ∼= R2d with a single
network, it is more practical to train two independent
ANNs on its real and imaginary parts; this allows the
layer width to be kept small, and it is straightforward to
combine the two network outputs post hoc. We imple-
ment our ANNs using the standard TensorFlow software
library [40]. Our network for the four-dimensional model
contains 25 hidden layers a`, where the first five comprise
2`+2 nodes and the remaining layers have 256 nodes each.
This choice of architecture is arrived at heuristically, with
the maximal layer width determined by that of the out-
put layer, and with 256-node layers being appended to a
smaller initial network until a satisfactory level of accu-
racy is achieved (without overfitting).

While the ROM training set is far too sparse for in-
terpolation purposes, it captures much of the underlying
structure and might be used to inform the distribution
of a larger ANN training set. However, a uniform grid
of training examples over an extended domain can also
yield good accuracy in the domain of interest. For the
four-dimensional model, 6 × 105 training examples are
needed to prevent overfitting, which we define as a dif-
ference of > 0.1% in median accuracy on the training
and test sets. To enforce this, small validation sets of
5,000 examples are randomly generated throughout the
training stage, and are used to inform the regularization
method of early stopping [41]. Early stopping turns out
to be unnecessary for the final network and full training
set, since underfitting is present instead; this is indicated
by a leveling-off in performance on both the training and
validation sets as the network is trained.

The “leaky RELU” activation function [42] is applied
on all hidden layers of the four-dimensional network,
while linear activation (with a being the identity) is used
on the output layer. Although the leaky RELU has good
training efficiency [43], it is of class C0 with vanishing
second derivative, such that ∂2α̂/∂θ2 also vanishes glob-
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FIG. 2. Top: Plot of accuracy A as a function of (Mc, η) for
test set (inside red border), and for 3,000 training examples
with (Mc, η) outside the domain of interest. Inset: Histogram
of test-set accuracy values with tenth percentile (dashed) and
median (solid) indicated. Bottom: Visualization of typical
coefficient vectors Re(α) (yellow) and Re(α̂) (gray).

ally. This is not the case for the (slower-to-train) tanh
activation function [44], which we employ in an ANN for
the two-dimensional submodel. A mini-batch [19] size
of 103 is empirically chosen for the training stage, and
the adaptive, momentum-based ADAM optimization al-
gorithm [45] (but with a manually decayed initial learning
rate) is used to minimize the loss function3

L :=

〈
|α− α̂|2

〉√
〈|α̂|2〉

, (5)

where 〈·〉 denotes the average over a mini-batch.
To quantify the accuracy of α̂ on a test set of 5,000 ex-

amples, we use the normalized inner product (or overlap)
between α and α̂, i.e., A := α†α̂/|α̂|. The error 1 − A
is related to (5) for a single template by 1 − A ≤ L/2,
with equality in the case of an accurate norm (|α̂| = 1).

3 This least-squares loss is weighted to converge from the direction
of a larger norm, which helps to preserve the proportion between
the independently trained real and imaginary parts.

FIG. 3. Plot of accuracy A as a function of (Mc, χ1) for test
set (left), and for the 3,000 training examples in Fig. 2 (right).

Results for the four-dimensional model are presented in
Figs 2 and 3. The ANN achieves a median accuracy of
99.5%; other high-dimensional ROM applications such as
the numerical-relativity surrogates have typical median
accuracies of 99.9% [9, 11]. Some of the disparity can
be attributed to the four-fold larger mass ratio of eight
in our model. Regardless, we estimate that the error in
our ANN decays exponentially with network capacity: no
more than 40 layers should be enough to hit 99.9%, which
would only raise the network evaluation time from 1.5 to
2 ms (although the training-set size and the number of
training epochs would have to be increased as well).

Parameter-estimation applications. The analytic
waveform derivatives from our ANNs hold intriguing
possibilities for GW data analysis, as they are immune to
the speed and stability issues posed by taking derivatives
numerically. For the above four-dimensional model, the
Jacobian Ja

i := ∂iα̂
a is evaluated in ∼ 0.1 s (without

optimization); this yields fast and accurate estimates of
the Fisher information matrix Fij := JaiJ

a
j . The Fisher

matrix describes the linearized (in α̂) likelihood around
the maximum-likelihood estimate θML [46], i.e.,

L1(θ) ∝ exp
{
− 1

2Fijϑ
iϑj
}
, (6)

where ϑ := θ−θML. Eq. (6) is inaccurate at low detection
SNR, but may be improved with the Hessian Ha

ij :=
∂i∂jα̂

a. The noise-free second-order likelihood is [46, 47]

L2(θ) ∝ L1(θ) exp
{
− 1

2Cijkϑ
iϑjϑk − 1

8Qijklϑ
iϑjϑkϑl

}
,

(7)
where Cijk := JaiH

a
jk and Qijkl := HaijH

a
kl. In Fig. 4,

we compare the probability contours of L1 and L2 to the
stochastically sampled L, for a low-SNR injected signal
β = 2α̂(θ∗) in the two-dimensional (Mc, η)-submodel.

Another promising application is derivative-based sam-
pling, which has hitherto been underutilized in GW pa-
rameter estimation due to the dearth of tractable wave-
form/likelihood derivatives. Most such techniques are
Markov-chain Monte Carlo algorithms with gradient-
informed chain dynamics (e.g., the Metropolis-adjusted
Langevin algorithm [48, 49], Hamiltonian Monte Carlo
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FIG. 4. One- to three-sigma contours (red) for L1 (left) and
L2 (right) overlaid on density histogram of 105 samples drawn
from L, with θML = θ∗ = (4/3, 0.18) (yellow point).

FIG. 5. Using the derivative-based sampling method of [52],
a “base chain” (left; red points) is formed from the first 5,000
samples of the 105-sample chain in Fig. 4. Each base point
seeds a “mini-distribution” of 20 points that are projected
onto the tangent bundle of the signal manifold, and weighted
accordingly in an approximate density histogram (right).

[50], and a family of stochastic-gradient variants [51]).
They improve convergence near the maximum-likelihood
point, but appear to be of less benefit in the more difficult
global-search problem (due to many suppressed station-
ary points in the tail of a typical GW likelihood, which
are present even at high SNR and can be found by map-
ping out the gradient field within our framework). A dif-
ferent type of derivative-based method for local sampling
and density estimation exploits the constrained-Gaussian
form of a target density such as Eq. (4) to produce ap-
proximate samples efficiently [52]. Applying this scheme
to the above example gives the estimated histogram in
Fig. 5, with order-of-magnitude computational savings.

Conclusion. We submit that ANNs are powerful tools
for the high-dimensional interpolation of reduced-basis
projection coefficients α(θ), as necessary for the applica-
tion of ROM to GW data analysis. Our approach is suit-
able for any waveform model whose signal space can be
represented by a compact (d ∼ 102) reduced basis; more
extensive parameter domains may be dealt with piece-
wise. The ANNs provide fast, reliable derivatives that
enable new techniques in GW parameter estimation. An-
other intriguing prospect is the possibility of inverting the

ANN into a map from signal space to parameter space, in
effect using ROM coefficients (obtained by projecting de-
tector data onto the reduced basis) as natural machine-
learning features. Such inverse ANNs could be trained
on noisy data to provide quick maximum-likelihood es-
timates, supplemented by Fisher matrices from the for-
ward map; their construction is left for future work.
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