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Results on the hardness of approximate sampling are seen as important stepping stones towards a convincing

demonstration of the superior computational power of quantum devices. The most prominent suggestions for

such experiments include boson sampling, IQP circuit sampling, and universal random circuit sampling. A key

challenge for any such demonstration is to certify the correct implementation. For all these examples, and in

fact for all sufficiently flat distributions, we show that any non-interactive certification from classical samples

and a description of the target distribution requires exponentially many uses of the device. Our proofs rely on

the same property that is a central ingredient for the approximate hardness results: namely, that the sampling

distributions, as random variables depending on the random unitaries defining the problem instances, have small

second moments.

Quantum sampling devices have been hailed as promis-

ing candidates for the demonstration of “quantum (compu-

tational) supremacy”1 [1]. The goal of any such experiment

is to unambiguously demonstrate that quantum devices can

solve some tasks both faster and with a more favourable scal-

ing of the computational effort than any classical machine. At

the same time, in the near term it is bound to use those small

and computationally restricted quantum devices that are avail-

able before the arrival of universal, scalable, and fault-tolerant

quantum computers. This challenge has sparked a flurry of

experimental activity [2–7] and prompted the development of

better classical sampling schemes for exact [8, 9] and imper-

fect realizations [10–13]. Due to the reality of experimental

imperfections, the key theoretical challenge — achieved in

Refs. [14–22] using Stockmeyer’s approximate counting al-

gorithm [23] — is to prove that even approximately sampling

from the output distribution of the quantum device is classi-

cally hard.

In any such demonstration, the issue of certification is

of outstanding importance [10, 17, 24–27]: To demonstrate

something non-trivial, one not only needs to build a device

that is designed to sample approximately from a classically

hard distribution but at the same time, one needs to ensure

from a feasible number of uses of the device (or its parts) that

it actually achieves the targeted task. How can one convince

a skeptical certifier that a quantum device, which supposedly

does something no classical machine can do, actually samples

from a distribution that is close enough to the ideal target dis-

tribution?

The arguably most elegant and most convincing certifica-

tion would be one based on purely classical data, ideally

only the samples produced by the device and a description

of the target distribution. Such certification would be free

of additional complexity-theoretic assumptions and device-

independent, in that it would be agnostic to all implementa-

1 Acknowledging the recent debate, we use the term “quantum (computa-

tional) supremacy” strictly in its established technical meaning [1].

tion details of the device and would directly certify that the

classically defined sampling problem was solved.

In this work, we rigorously prove for a broad range of sam-

pling problems, specifically for boson sampling [14], univer-

sal random circuit sampling [15, 17], IQP circuit sampling

[16, 24], and sampling from post-selected-universal 2-designs

[20–22, 28, 29] that they cannot be efficiently certified from

classical samples and a description of the target probability

distribution. Ironically, it turns out that the same property of

a distribution that allows to prove the known approximate-

hardness results also forbids their non-interactive sample-

efficient device independent certification, to the effect that

with the known proof methods both properties cannot be

achieved simultaneously in such schemes. We directly bound

the sample complexity of certification, which means that we

automatically also lower bound the computational complexity

and that our results cannot be circumvented by increasing the

classical computational power of the certifier.

The specific question of certification we focus on here is
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Figure 1. We consider the problem of certifying probability dis-

tributions of the form PU (S) = |〈S|U |S0〉|
2 with an input state

|S0〉 = |0〉⊗n and a unitary U ∼ µn drawn from some measure µn.

Given ǫ > 0 and access to an arbitrary-precision description of the

target distribution PU , the test Tn treats the sampler as a black box

and receives a sequence S = (Si)
s
i=1 ∼ Q of s samples from an un-

known distribution Q. Given S the test is asked to output “Accept”

if Q = PU and “Reject” if ‖Q− PU‖1 > ǫ with high probability.
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(see Figure 1): Given unlimited computational power and a

full description of the target distribution, how many samples

from an unknown distribution are required to guarantee that

this distribution is either identical to the target distribution

or at least some preset distance away from it? This problem

of distinguishing one (target) distribution from all sufficiently

different alternatives is known as identity testing [30] in the

property testing literature. Identity testing is an easier task

than its robust version in which the certifier is moreover re-

quired to accept a constant-size region around the target dis-

tribution [26, 31]. At the same time, it is much harder than

mere state-discrimination, where the task is to differentiate

between two fixed distributions.

Lower bounds on the sample complexity of restricted state-

discrimination scenarios [10] prompted the development of

schemes [25] that allow to corroborate and build trust in ex-

periments [6, 7, 32]. This helped spark interest in the prob-

lem of device-independent certification — on which there had

not been much progress since [24]. In contrast to previous

work [10], here, the certifier is given a full description of the

target distribution2 and unlimited computational power.

Our proof, detailed in the Supplementary Material [33],

makes use of a key property for the proof of hardness of ap-

proximate sampling, namely an upper bound on the second

moments of the output probabilities with respect to the choice

of a random unitary specifying the instance of the sampling

problem. The bound on the second moments implies that

the probabilities are concentrated around the uniform distri-

bution and hence an anti-concentration property3. This anti-

concentration allows lifting results on the hardness of approx-

imate sampling up to relative errors to ones for additive errors

— provided relative-error approximation of the output proba-

bilities is hard on average. It is thus a key property to prove

hardness in the physically relevant case of approximate sam-

pling that prevents a purely classical non-interactive certifica-

tion of the output distribution, see Figure 2.

A central ingredient to our proof is a recent result by Valiant

and Valiant [36] specifying the optimal sample complexity of

certifying a known target distribution P . It can be stated as

follows. Fix a preset distance ǫ > 0 up to which we want to

certify. Now, suppose we receive samples from a device that

samples from an unknown probability distribution Q. Then

— for some constants c1, c2 — it requires at least

c1 ·max

{

1

ǫ
,
1

ǫ2
‖P−max

−2ǫ ‖2/3
}

(1)

and at most

c2 ·max

{

1

ǫ
,
1

ǫ2
‖P−max

−ǫ/16 ‖2/3
}

(2)

many samples to distinguish the case P = Q from the case

‖P − Q‖1 ≥ ǫ with high probability. Here ‖ · ‖1 denotes

2 In particular, the certifier is given the value of all target probabilities to

arbitrary precision.
3 See the Supplementary Material [33], Sec. S3 A
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Figure 2. A high level overview of the approximate sampling “quan-

tum supremacy” proofs of Refs. [14–16, 18–20, 34] using Stock-

meyer’s algorithm [23]. Invoking a worst-case hardness result for

the calculation of the output probabilities of some circuit family,

Stockmeyer’s algorithm can be used to prove the hardness of ex-

act sampling. The key properties of the output probabilities that

allows to prove hardness of approximate sampling are that comput-

ing these probabilities is even hard on average and that the distribu-

tion anti-concentrates. We show that the same property that is es-

sential to arrive at a hardness result for approximate sampling via

anti-concentration also makes it hard to certify from classical sam-

ples and a complete description of the target distribution, even with

unbounded computational power.

the ℓ1-norm reflecting the total-variation distance. The central

quantity determining the sample complexity of certification is

thus the quasi-norm ‖P−max

−ǫ ‖2/3 which is defined as follows.

First, find the truncated distribution P−max

−ǫ by removing the

tail of the target distribution P with weight at most ǫ as well

as its largest entry, see Figure 3. Then, take the ℓ2/3-norm as

given by ‖x‖2/3 = (
∑

i |xi|2/3)3/2 for a vector x with entries

xi.

We now proceed in two steps. First, we show lower and up-

per bounds on the quantity ‖P−max

−ǫ ‖2/3 in terms of the largest

probability p0 occurring in P and its support ‖P−max

−ǫ ‖0 as

given by

p
−

1

2

0
(1− ǫ− p0)

3/2 ≤ ‖P−max

−ǫ ‖2/3
≤ (1− p0) ‖P−max

−ǫ ‖
1

2

0
.

(3)

ǫ

p0

Figure 3. The vector P−max

−ǫ is obtained from P by removing the

largest element p0 of P as well as the smallest probabilities that ac-

cumulate to a total weight bounded by ǫ.
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Figure 4. Hardness and certification in terms of the flatness of P−max

−ǫ for the example of IQP circuits [16, 24] on n qubits as obtained

from the present result and the classical simulation algorithm of Schwarz and Van den Nest [35]. There, it is shown that a certain natural

family of quantum circuits (including IQP circuits) can be efficiently simulated on a classical computer if the output distribution is essentially

concentrated on a polynomial number of outcomes only. In this case, i.e., for ‖P−max

−ǫ ‖0 . poly(n), the output distribution is also sample-

efficiently certifiable as the bounds (2) and (3) show. Their classical simulation algorithm breaks down if the distribution is essentially spread

out over more than polynomially many outcomes, and we even have a rigorous hardness argument by Bremner et al. [16] for exponentially

flat distributions. Conversely, the number of samples required for certification becomes prohibitively large if the distribution is exponeentially

spread out, as measured by the ℓ2/3-norm (1). Nevertheless, as we illustrate here, there could be “room in the middle” where, for reasonably

but not exponentially flat distributions, one may hope to find tasks that are both classically intractable and sample-efficiently certifiable in a

device-independent fashion.

Then it follows from Eqs. (1) and (3) that the sample com-

plexity of certifying a distribution P up to a constant total-

variation distance ǫ is essentially lower bounded by 1/
√
p0.

Hence, if P is exponentially flat in the sense that the largest

probability is exponentially small in the problem size (here,

the number of particles), ǫ-certification requires exponentially

many samples. Conversely, if P−max

−ǫ/16 is supported on poly-

nomially many outcomes only, sample-efficient certification

is possible by the converse bound (2).

Second, we connect this result to the output distributions

of “quantum supremacy” schemes. In all schemes that rely

on the Stockmeyer argument, the problem instances are de-

fined in terms of a unitary U that is randomly chosen from

some restricted family, e.g., linear optical circuits in the case

of boson sampling [14] or random universal circuits [15, 17]

in a qubit architecture , captured by a respective measure µn

on the n-particle unitary group. Specifically, we prove that

with high probability over the choice of the random unitary,

the distribution over outputs PU associated with this unitary

(induced via PU (S) = |〈S|U |S0〉|2, U ∼ µn) will be ex-

ponentially flat in the sense that H∞(PU ) ≥ Ω(n). Here,

H∞(P ) = − logmaxx px is the min-entropy of P . We show

that, ironically, this follows from an upper bound on the sec-

ond moments of the output probabilities, which is at the same

time a central ingredient in the Stockmeyer hardness argument

for approximate sampling. Specifically, we prove that with

probability at least 1 − δ over the choice of U (see Lemma 5

in the Supplementary Material [33])

H∞(PU ) ≥
1

2

(

log δ − log
∑

S

EU∼µn
[PU (S)

2]

)

. (4)

Putting everything together we obtain lower bounds on the

sample complexity of certification for boson sampling, IQP

circuit sampling and random universal circuit sampling with

(sufficiently many) n particles. In all of these cases, the sam-

ple complexity scales at least as fast as

1

ǫ2
(2nδ)1/4 , (5)

with probability at least 1 − δ over the random choice of the

unitary.

The upshot is: a key ingredient of the proof of approximate

sampling hardness as effected by the random choice of the

unitary prohibits sample-efficient certification.

We show that one cannot hope for purely classical, non-

interactive, device-independent certification of the proposed

quantum sampling problems. This highlights the importance

of devising alternative schemes of certification, or improved

hardness results for more peaked distributions. We hope to

stimulate research in such directions.

A particularly promising avenue of this type of certifica-

tion has been pioneered by Shepherd and Bremner [24]: By

allowing the certifier to choose the classical input to the sam-

pling device rather than drawing it fully at random, it is un-

der some plausible cryptographic assumptions possible to ef-

ficiently certify the correct implementation of a quantum sam-

pler from its classical outcomes. This is facilitated by check-

ing a previously hidden bias in the obtained samples and has

been achieved for a certain family of IQP circuits [24]. How-

ever, in contrast to Ref. [16], there is no approximate sampling

hardness result for this family.

Focusing on so-called relational problems as opposed to

sampling problems, it has been argued via new complexity-

theoretic conjectures that the task HOG of outputting the

heavy outcomes of a quantum circuit (those outcomes with

probability weight larger than the median of its output dis-

tribution) is classically intractable [37]. Clearly, this task



4

is sample-efficiently checkable via its in-built bias, but still

requires exponential classical computation to determine the

probabilities of the obtained samples, which are compared to

the median.

Taking a pragmatic stance, one can make additional as-

sumptions on the device. In fact, only recently has it been

shown [17] that cross-entropy measures [15] provide direct

bounds on the total-variation distance provided the entropy of

the real distribution is larger than that of the target distribu-

tion. One might also be content with weaker notions of certi-

fication in total-variation distance such as the certification of

a coarse-grained version of the full output distribution [38].

Coarse-graining procedures are practically useful as corrob-

oration schemes when distinguishing against plausible alter-

native distributions such as the uniform distribution, but of

course fail to certify against adversarial distributions on the

full sample space. All such approaches yield sample-efficient

certificates that require exponential computational effort, ren-

dering them feasible at least for intermediate-scale devices.

Another way to certify a sampling device is the certification

of the entire machine from its components. However, such

schemes need to make assumptions about the absence of un-

wanted influences between the components such as crosstalk.

In a similar vein, one can make use of implementation details

and give the certifier some quantum capabilities such as ac-

cess to a small quantum computer [39], the ability to manipu-

late single qubits [40], or to measure the output quantum state

in different bases with trusted quantum detectors [27, 41] to

devise certificates even in non-iid. settings [42]. In this way,

one can partially trade-in the simplicity of sampling schemes

for better certifiability.

It is interesting to note the connection of our result with

results on classical simulation. Similarly to our findings for

the case of certification, Schwarz and Van den Nest [35] find

that for certain natural families of quantum circuits (including

IQP circuits) classical simulation is possible for highly con-

centrated distributions, but impossible for flat ones, see Fig-

ure 4. This again gives substance to the interesting connection

between superior computational power, the flatness of the dis-

tribution and the impossibility of an efficient certification.

Curiously, at the same time, the property that prohibits

sample-efficient certification is by no means due to the hard-

ness of the distribution. It is merely the flatness of the dis-

tribution on an exponential-size sample space as effected by

the random choice of the unitary that is required for the ap-

proximate hardness argument via Stockmeyer’s algorithm and

standard conjectures. The uniform distribution on an expo-

nentially large sample space, which is classically efficiently

samplable, can also not be sample-efficiently certified.

A further noteworthy connection is that to Shor’s algorithm.

The output distribution of the quantum part of Shor’s algo-

rithm is typically spread out over super-polynomially many

outcomes and can hence neither be efficiently simulated via

the algorithm of Schwarz and Van den Nest [35], nor certified

as we show here. However, after the classical post-processing,

the output distribution is strongly concentrated on few out-

comes — the factors — from which one can verify the correct

working of the algorithm. A certification of the intermediate

distribution is simply not necessary to demonstrate a quan-

tum speedup in Shor’s algorithm, as its speedup is derived

from it solving a problem in NP and not from it sampling

close to a hard distribution. This shows that while intermedi-

ate steps of a computation might not be certifiable, the final

outcome may well be. Whether this is enough to demonstrate

a speedup depends on the nature of the hardness argument. In

fact, the abovementioned task HOG [37] bears many similari-

ties to factoring and its certifiability from the outcomes of the

algorithm.

We hope that our result will stimulate research into new

ways of proving hardness of approximate sampling tasks that

are more robust than those based on anti-concentration, as

well as into devising alternative verification schemes possi-

bly based on mild and physically reasonable assumptions on

the sampling device or the verifier.
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