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Biomechanical feedback strengthens jammed cellular packings
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Growth in confined spaces can drive cellular populations through a jamming transition from a
fluid-like state to a solid-like state. Experiments have found that jammed budding yeast populations
can build up extreme compressive pressures (over 1MPa), which in turn feed back onto cellular
physiology by slowing or even stalling cell growth. Using numerical simulations, we investigate how
this feedback impacts the mechanical properties of model jammed cell populations. We find that
feedback directs growth toward poorly-coordinated regions, resulting in an excess number of cell-cell
contacts that rigidify cell packings. Cell packings posses anomalously large shear and bulk moduli
that depend sensitively on the strength of feedback. These results demonstrate that mechanical
feedback on the single-cell level is a simple mechanism by which living systems may tune their
population-level mechanical properties.

Granular materials undergo a jamming transition upon
compression, at which point the entire system becomes
rigid so that further compaction is not possible without
pressure build-up [1, 2]. Packings obtained in this man-
ner are spatially-disordered similar to liquids but, like
solids, do not yield (irreversibly deform) upon application
of an external stress [3]. The transition occurs at a well-
defined packing fraction φ = φJ [2], at which the system
is marginally stable (i.e. removing a single contact causes
the system to lose mechanical rigidity) [4]. Compression
beyond the jamming point (φ > φJ) rigidifies packings,
resulting in mechanical properties that exhibit nontrivial
power law scalings as a function of δφ = φ − φJ [2, 4–
8]. It has been recently demonstrated that confined mi-
crobial populations can similarly drive themselves into
a rigid state via cellular growth and division [9]. Cellu-
lar populations fundamentally differ from inert granular
media in that, whereas granular systems are static un-
less driven externally [10–15], cellular populations are
active systems that are driven internally as cells con-
sume energy from their environments in order to move
or grow [9, 16–21]. Growth-driven jamming also differs
from the recently studied motility-driven jamming tran-
sition [18, 22], in which the system is kept at constant
density and is driven by innate cell motility rather than
growth. In the case of growth-driven jamming, it is an
open question if the cellular packings have the same uni-
versal physical properties as conventional granular mate-
rials [2, 7]. In particular, experiments have shown that
cell-cell forces slow down cell growth [9], but it remains
unknown whether this mechanical feedback at the single-
cell level has consequences for population-level mechani-
cal properties. In this work, we show that budding cells
can control the mechanical properties of densely-packed
populations by leveraging their shape and the coupling
between cellular growth rate and cell-cell forces [9, 23].

We perform 2D numerical simulations of budding
yeast populations growing in space-limited environments.
Each cell is represented as conjoined mother and daugh-
ter lobes that reproduce asexually via expansion of the
daughter “bud” (Fig. 1(a)), a modeling approach first de-

veloped in [9] alongside microfluidic experiments. In this
mode of proliferation, bud expansion progresses until the
bud reaches the size of a mother cell, at which point the
bud detaches and mother and bud form two new cells. To
capture the experimentally-measured diminished growth
rate under compressive mechanical stress [9], each cell
in our model grows at a rate γ that decreases exponen-
tially with the pressure exerted on its daughter bud Pbud:
γ ∝ e−Pbud/P0 (Fig. 1(b)). The feedback pressure P0 con-
trols the strength of feedback, with smaller values of P0

corresponding to “stronger” feedback.

As cells proliferate, repulsive elastic forces between
cells (see Supplemental Material, Fig. S1) push the pop-
ulation to expand outward via completely over-damped
dynamics (Fig. 1(c)-(g)). In the absence of external
confinement (Fig. 1(c) and (d)), the population remains
at zero pressure with no force-bearing contacts between
cells. However once the population fills the environment
in which it resides (implemented here via periodic bound-
ary conditions), it is driven through a jamming transition
(Fig. 1(e)) at packing fraction φJ ≈ 0.84 that is charac-
terized by a sudden increase in the population pressure
P (Fig. 1(h)) and a discontinuous jump in the number of
contacts Z (Fig. 1(i)). While mechanical feedback does
not affect packings below jamming, feedback strength
P0 determines how pressure and contacts build up be-
yond jamming. To understand how mechanical rigidity
emerges beyond jamming we first investigate mechanisms
underlying the creation of new cell-cell contacts, since
contacts are known to control the mechanical properties
of non-living granular media [2, 7, 24].

At the jamming point, the average number of contacts
per cell jumps from Z = 0 to Z = ZJ ≈ 5.5 (Fig. 1(i)), a
result that is independent of P0. The value ZJ ≈ 5.5 is
smaller than the naive isostatic expectation Znaive

iso = 6,
predicted by the Maxwell criterion by equating the num-
ber of bud-bud contacts per cell (Znaive

iso /2) to the number
of degrees of freedom per cell (3: two translational and
one rotational) [25]. This deviation from naive isostatic-
ity results from the presence of numerous cells whose
buds are not in contact with their neighbors (depicted
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FIG. 1. (a) Schematic of the growth and division process. Each cell grows by bud expansion. Budding culminates via mother-
daughter separation when the daughter reaches the size of a mother cell. (b) Schematic of feedback of cell-cell forces onto
growth. Daughter buds contact their neighbors as they grow (dashed black lines). The associated contact forces generate
pressure on the growing bud, defined here as the ratio of total force magnitude Ftot to perimeter Lbud of the daughter bud
(see Supplemental Material): Pbud = Ftot/Lbud. This pressure in turn decreases its growth rate as γ ∝ e−Pbud/P0 . (c-g)
Snapshots from a typical simulation. (c) Each simulation is inoculated with two cells. (d) Cell growth drives the population to
expand outward. During expansion, cells interact with their neighbors via repulsive elastic forces and completely overdamped
dynamics. (e) The population undergoes a “jamming transition” at φJ = 0.84, at which point a system-spanning network
of force-bearing intercellular contacts develops (red lines). At jamming, most mother (gray) and daughter (brown) buds are
constrained by their neighbors, but ≈ 25% of buds (yellow) are unconstrained (see Supplemental Material). Above jamming,
packings have more unconstrained buds when (f) cell growth rate is independent of mechanical pressure than when (g) pressure
feeds back onto growth (P0/k = 10−3). Both (f) and (g) are at φ = 0.89. (h) The pressure that the entire population exerts on
its surroundings (see Supplemental Material) is zero below jamming (φ < φJ) and increases as the cells grow above jamming
(φ > φJ). With no feedback and weak feedback (P0/k = 5×10−3), P is almost linear in φ. For strong feedback (P0/k = 10−3),
P increases more slowly with φ. All pressures are measured in units of the cell-cell modulus k (see Supplemental Material). (i)
The number of contacts Z per cell jumps discontinuously from Z ≈ 0 to Z = ZJ ≈ 5.5 at jamming at φJ , and increases more
quickly for strong feedback than for weak or no feedback. For periodic boundary conditions, (c)-(g) use box size L = 7σ and
(h) and (i) use box size L = 15σ where σ is a cell diameter. (h) and (i) show data for one typical population. We find that ZJ

does not exhibit significant system size effect, with ZJ ≈ 5.5 for different initial conditions and for large systems (Fig. S2(b)).

in yellow in Fig. 1(e)). Cells with “unconstrained” buds
are free to rotate about their mother, and therefore corre-
spond to degrees of freedom that are not constrained by
cell-cell contacts. By subtracting the number of uncon-
strained buds per cell fu from the number cellular degrees
of freedom, we can derive a modified isostatic criterion
Ziso = Znaive

iso − 2fu (see Supplemental Material) that is
satisfied by nearly all simulated populations at the P → 0
jamming threshold (Fig. S2(a)). This isostatic criterion
can alternatively be derived by considering cells to be
composed of two separate lobes, and removing all lobes
are are not mechanically stable (Supplemental Material).

We find that a substantial fraction of cells (fu ≈ 25%)
have unconstrained buds at jamming, which manifests
in a strong departure (Fig. S2) from naive isostatic-
ity (Znaive

iso − ZJ ≈ 0.5). The relationship between un-
constrained buds and contacts is also observed in non-
growing systems. Packings of asymmetric dumbbell-
shaped particles that resemble budding cells yield similar
results (fu & 10% and Znaive

iso − ZJ & 0.2) [26], whereas
packings of symmetric dumbbells with equal-sized lobes
have many fewer unconstrained buds (fu . 2%) and
are therefore much closer to isostacity (Znaive

iso − ZJ .
0.04) [27]. Packings of other frictionless objects such as
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FIG. 2. (a) Fraction of unconstrained buds fu as a function of the population pressure generated by growing budding yeast
packings above the jamming point. fJ

u denotes the value of fu at the jamming threshold (P → 0). Colored lines correspond
to different feedback values. Populations without feedback have a finite number of unconstrained buds up to P ≈ Pmax, which
corresponds to φ ≈ 1 (Fig. 1(h)). (b) Distribution of cell growth rates for microbial populations with weak (P0/k = 5× 10−3)
and strong (P0/k = 10−4) feedback. In order to measure growth rates as unconstrained buds make contact, both populations
have a value of fu that is ≈ 50% of that measured at jamming (fu ≈ 0.13). The black bar denotes cells under no or very little
pressure, thus growing as they would in the absence of feedback. The gray bar denotes cells whose growth rates are reduced by
pressure. The growth rate γ(i) of each cell is normalized by γ0

i , the growth rate that a cell would have without feedback (see
Supplemental Material). Simulations have box size L = 15σ. Each data point is averaged over 100 independent inoculations.

ellipsoids [26, 28–30] and spherocylinders [26, 31] also
exhibit deviations from naive isostaticity due to uncon-
strained degrees of freedom. Additionally, a similar phe-
nomena occurs in frictional packings, where the deviation
from naive isostaticity can be accounted for by counting
the number of sliding contacts [32, 33].

As cells grow beyond the jamming point (φ > φJ),
the population pressure P builds (Fig. 1(h)) and uncon-
strained buds begin to make contact with their neighbors
(Fig. 1(f)-(g), Fig. 2(a)). This increase in population
pressure, corresponding to comparable pressure on indi-
vidual cells 〈Pbud〉 ≈ P , triggers mechanical feedback and
slows the growth of cells for P & P0 (Fig. 1(b)). We ob-
serve two distinct behaviors for “strong” (P0 . Pth) and
“weak” (P0 & Pth) feedback, separated by a threshold
pressure (Pth/k ≈ 0.005) much smaller than the maxi-
mal pressure felt by populations near confluency φ ≈ 1
(Pmax/k ≈ 0.1, see Supplemental Material). For weak
feedback, cell growth rates are not strongly reduced as
unconstrained buds make contact with their neighbors
(Fig. 2(b)). On the other hand, strong feedback slows
the growth of compressed buds by such an extent that
it creates two distinct subpopulations: compressed buds
that are effectively stalled in their cell cycle and uncon-
strained (and therefore uncompressed) buds that are ac-
tively growing. The threshold (Pth) between strong and
weak feedback corresponds to the pressure at which the

majority of previously unconstrained buds contact their
neighbors in the absence of feedback (Fig. 2(a)). There-
fore, in contrast to weak feedback where cells are driven
into contact by nearly uniform population growth, strong
feedback directs growth toward unconstrained buds.

The directed growth of unconstrained buds enables
populations growing under strong feedback to create ad-
ditional contacts with little associated pressure build-up
(Fig. 3(a)). In the absence of feedback, the excess number
of contacts increases roughly as ∆Z = Z − Ziso ∝ P 1/2,
as expected from studies on jamming in non-living sys-
tems [2, 27], where Ziso = Znaive

iso −2fu increases as uncon-
strained make contact (Fig. S7). However, populations
growing under strong feedback exhibit abrupt departures
from this expectation (Fig. 3(a)) at pressures P ′ that
decrease with increasing feedback strength (P ′ ∝ P0).
For strong feedback, additional contacts are generated
rapidly as a function of P until all unconstrained buds
make contact with their neighbors (Fig. 2(a)). These new
unconstrained bud contacts result in Z = Ziso

naive + 2fJu
and Ziso = Ziso

naive, an excess of ∆Zu = 2fJu ≈ 0.5 con-
tacts (Fig 3(a), Supplemental Material). Since the excess
of contacts is pushed to lower pressures as P0 decreases,
we conjecture that when P0 = 0 (see phenomenological
model in Supplemental Material, Fig. S8) cell packings
will have more contacts than required for mechanical sta-
bility even at P = 0 (i.e., hyperstaticity).
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FIG. 3. (a) Excess number of contacts, ∆Z = Z−Ziso. Colored lines correspond to different feedback values and shaded regions
represent one standard deviation. To show where growth has been appreciably slowed by cell-cell forces, dashed colored lines
correspond to populations whose average cell growth rate is reduced by a factor of 10 compared to growth without feedback
(Fig. S5). Solid colored lines correspond to growth rates within a factor of 10 of those without feedback. The dotted black line
shows the number of contact resulting from unconstrained bud contacts ∆Zu = 2fu ≈ 1 (see Supplemental Material). (b) Bulk
modulus as a function of pressure for populations growing under five different feedback strengths. (c) Shear modulus G for cell
packings. Inset: Shear modulus in terms of excess contact number ∆Z. Line-types in (b) are the same as shown in (a). Black

lines for each panel show known results for disk packings G ∝ ∆Z ∝ P 1/2 [2]. Simulations have box size L = 15σ and each data
point is averaged over 100 independent inoculations. For this box size, packing have 〈N〉 ≈ 172 cells at the jamming point, for
which system size effects in ∆Z and G are expected for smaller pressures (P/k � 1/N2 ≈ 3× 10−5 [24]) than presented here.
We do not find significant system size effects in ∆Z (Fig. S2(b)) or G (Fig. S3).

How do excess contacts impact the mechanical proper-
ties of populations growing under strong feedback? Since
prior studies have found that contacts generated by ex-
ternal compression increase the rigidity of granular pack-
ings [2, 34], we hypothesize that contacts generated via
bud growth likewise rigidify cell packings. To test this hy-
pothesis, we first measure resistance to external compres-
sion as quantified by the bulk modulus B = φedP/dφe,
where the packing fraction φe increases via compaction
rather than cell growth. We find that B increases with
feedback strength (Fig. 3(b)), a direct consequence of
the formation of the additional contacts (Fig. S4). In
contrast to the increase in B (dP/dφe increases with
P0), pressure increases more slowly as packing fraction
is added via cellular growth (dP/dφ decreases with P0

in Fig. 1(h)). Mechanical feedback therefore allows cell
populations to disentangle their mechanical response to
internal perturbations (cell growth) from their response
to external perturbations (external compression).

While the generation of excess contacts only slightly
modifies the bulk modulus (B increases by ≤ 20% at
fixed pressure), we expect these contacts to substantially
impact the shear modulus since non-living packings are
known to be fragile with respect to shear [2, 24, 35]. By
measuring the shear stress Σxy generated under simple
shear strain γxy (see Supplemental Material), we find
that the shear modulus G = dΣxy/dγxy scales with pres-
sure as G ∝ P 1/2 in the absence of feedback but increases
sharply for strong feedback (Fig 3(c)) as unconstrained

buds make contact (Fig 2(a)). The sharp increase in G
is indeed controlled by contacts made by unconstrained
buds, as we find a one-to-one relationship between ∆Z
and G (Fig 3(c) inset). The stabilizing role of added con-
tacts can be understood from constraint counting: both
Z and Ziso increase as unconstrained buds make con-
tact, but Z increases faster than Ziso so that packings are
pushed above isostaticity (see Supplemental Material).

The result G ∝ P 1/2 for growth without feedback, also
observed in non-living packings [2, 27], suggests that pop-
ulations are fragile with respect to shear near jamming
and therefore susceptible to fluidization under thermal
excitation [35] or cell motility [22]. Populations grow-
ing under strong feedback, on the other hand, are sta-
bilized by excess contacts even at very small pressure.
Therefore, in contrast to populations without feedback
and non-living packings where rigidity comes at a cost
of increased cell-cell forces, cell populations growing un-
der strong feedback can rigidify themselves with minimal
associated pressure.

We have shown that budding cell populations undergo
a growth-driven jamming transition that has mechanical
properties not observed in non-living packings. Popula-
tions growing under mechanical feedback develop more
cell-cell contacts. These contacts are force-bearing and
increase the population’s resistance to shear and com-
pressive stresses by an amount expected from studies on
non-living granular materials [2]. As budding cell popu-
lations grow, this creation of excess intercellular contacts
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is not accompanied by a faster buildup of the internal
pressure in contrast to the anticipated behavior of ordi-
nary granular materials. The aforementioned feedback
mechanism is a simple and efficient means for expanding
microbial populations to increase their resistance to me-
chanical stress without building up growth-limiting com-
pressive mechanical forces. Our results could be exper-
imentally tested by measuring the number of bud-bud
contacts in a microfluidic setup [9] or measuring the rhe-
ological properties via techniques such as rotating disk
rheometry [36] or deformable microfluidic devices [37].

The ability to control their mechanical rigidity may
have important biologicial consequences for microbial
populations, such as preventing fluidization caused by
apoptosis [38–41] or cell motility [17, 22], reducing the
susceptibility of biofilms to sloughing [42], or regu-
lating biofilm formation under self-induced mechanical
stress [43]. Furthermore, bio-insipired mechanical feed-
back may provide a promising method for creating syn-
thetic materials with tunable mechanical properties.
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