
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum Interferometry with a g-Factor-Tunable Spin Qubit
K. Ono, S. N. Shevchenko, T. Mori, S. Moriyama, and Franco Nori

Phys. Rev. Lett. 122, 207703 — Published 24 May 2019
DOI: 10.1103/PhysRevLett.122.207703

http://dx.doi.org/10.1103/PhysRevLett.122.207703


Quantum interferometry with a g-factor-tunable spin qubit

K. Ono1,2, S. N. Shevchenko3,4,5, T. Mori6, S. Moriyama7, Franco Nori3,8
1Advanced device laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan

2CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan
3Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan

4B. Verkin Institute for Low Temperature Physics and Engineering, Kharkov 61103, Ukraine
5V. N. Karazin Kharkov National University, Kharkov 61022, Ukraine

6Nanoelectronics Research Institute, National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

7International Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan and
8Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1040, USA

(Dated: April 20, 2019)

We study quantum interference effects of a qubit whose energy levels are continuously modulated.
The qubit is formed by an impurity electron spin in a silicon tunneling field-effect transistor, and it is
read out by spin blockade in a double-dot configuration. The qubit energy levels are modulated via its
gate-voltage-dependent g-factors, with either rectangular, sinusoidal, or ramp radio-frequency waves.
The energy-modulated qubit is probed by the electron spin resonance. Our results demonstrate the
potential of spin qubit interferometry implemented in a silicon device and operated at a relatively
high temperature.

PACS numbers: 73.63.Kv, 73.23.Hk, 76.30.-v

Introduction.—Sensitive measurement techniques are
based on the interference of waves. The most striking
illustration is the recent use of interferometry for the de-
tection of gravitational waves [1]. If in place of classi-
cal electromagnetic waves one can use the wave func-
tions of quantum objects, such techniques can be called
quantum interferometry. This was studied not only for
conventional small quantum objects [2, 3], but also for
large organic molecules [4, 5] and micrometer-size super-
conducting circuits [6–8]; see also a recent review article
[9] for different realizations and applications in quantum
sensing. Since it is difficult to maintain a coherent super-
position of charge states, it might be more beneficial to
use instead the spin degree of freedom [10]. Interestingly,
silicon, the second most abundant element in the Earth’s
crust and the base of modern electronics, is an ideal envi-
ronment for spins in the solid state [11]. In this work, we
will explore how to use a single-spin silicon-based qubit
for quantum interferometry.

Among other characteristics, for quantum engineering
it is important to have qubits which are “hot, dense,
and coherent” [12]. In this context, “hot” means work-
ing in the technologically less challenging few-Kelvin
regime rather than being cooled down to the milli-Kelvin
domain. “Dense” refers to the possibility to achieve
high density of quantum dots or donors in semiconduc-
tors. Another benefit of this platform is its compatibil-
ity with the well-developed complementary-metal-oxide-
semiconductor (CMOS) technology. Even more, it has
been shown [13–15] that transistors can behave as quan-
tum dots, in which either charge or spin qubits are real-
ized.

Quantum systems can be modulated by signals of dif-
ferent shapes, such as sinusoidal and square-wave signals.
The latter allows one to rapidly change a qubit state from

one to another, which we can refer to as latching modula-
tion of qubit states [16, 17]. If this is done with a period
longer than the coherence time, then the response has
two separate peaks, situated at the two resonance fre-
quencies corresponding to the two states. Increasing the
modulation frequency, the coherent response is displayed
as an averaged signal, situated at a frequency between
the two resonance frequencies mentioned above, which is
known as motional narrowing. Both motional averaging
and narrowing are known in NMR systems and recently
also studied in superconducting systems [18, 19]. In this
way, by changing the modulation frequency, namely its
ratio to the coherence rate, one can observe the transition
between classical (incoherent) and quantum (coherent)
regimes, as in Refs. [18, 20–22].

In this work, we focus on the time-ensemble behavior
of a spin-1/2 qubit and study the effect of continuously
modulating the qubit energy. In this way, we explore
the motional averaging not only for the symmetric latch-
ing modulation (which was previously demonstrated in
superconducting qubits [16–18]), but also in the asym-
metric regime, where dwelling in one state is longer than
in the other state. A square-wave modulation with vari-
able duty ratio shows weighted motional averaging. At
low modulation frequency, this is visualized, in the fre-
quency dependence, by two peaks (with weighted height
and width); while at high modulation frequency there
is only one averaged peak. We also demonstrate the si-
nusoidal energy modulation of the spin qubit and show
the Landau-Zener-Stückelberg-Majorana (LZSM) inter-
ference of the spin resonance signal. This is the first
demonstration of LZSM interference where the temper-
ature is much higher than the photon energy of the si-
nusoidal modulation frequency. For realizations of the
low-temperature LZSM interference in quantum-dot sys-
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FIG. 1: High-temperature TFET-based single-spin
qubit. (a) Schematic of the device and measurement set
up. The transistor is defined on a SOI structure with n-
type source and p-type drain electrodes. The channel length
and width are 80 nm and 10 µm, respectively. The source-
drain current ISD of the device is measured for the source-
drain voltage VSD; and the gate voltage VG at tempera-
ture T = 1.6 K is achieved with a pumped 4He cryostat.
A magnetic field B is directed along the source-drain cur-
rent. A microwave (MW) signal is applied on the substrate.
A gate-voltage modulation in the MHz regime is applied
through a high-pass block capacitor with cutoff frequency
(< 10 kHz) much smaller than the modulation frequency
(∼MHz). (b) Schematic of the potential landscape of the
device. (c) Schematic of the single-electron tunneling cycle in
the spin-blockade regime; see the SM for details.

tems see Refs. [23–30].
Device and measurement.—We used a spin qubit de-

vice based on a short-channel tunneling field-effect tran-
sistor, TFET [31], with the implanted deep impurity,
Fig. 1(a) [32–36]. The device is essentially a gate-tunable
PIN diode (a diode with an undoped intrinsic semicon-
ductor region between a p-type semiconductor and an
n-type semiconductor region). The ion implantations
created coupled Al-N impurity pairs in silicon [37–40].
For an appropriate channel length, a three-step tunnel-
ing from the n-type source electrode to the p-type drain
electrode occurs via two localized states in the channel,
Fig. 1(b). The PIN structure allows tunneling via the
localized states of a deep impurity and a shallow impu-
rity [36, 41].

Spin blockade and ESR.—The device has two localized
states, which behave as a double quantum dot device,
where the current is defined by single-electron transport

[42]. Under an appropriate source voltage VSD and gate
voltage VG, the device shows spin blockade (SB) [43]. At
the electron spin resonance (ESR) for one of the spins
in the double dot, the source-drain current ISD increases
due to the lifting of the spin blockade Fig. 1(c) [13, 44].
Note that the large on-site Coulomb energy and strong
confinement of these impurities allow a spin-qubit opera-
tion with a reasonable coherence time (T ∗2 = 0.2−0.3 µs)
at relatively high temperatures and low magnetic fields
[45]. Changing the gate voltage VG within the spin block-
ade region changes the g-factor by about 1% due to the
Stark effect [46].

We describe our spin qubit device as a two-level system
with the pseudo-spin Hamiltonian H(t) = Bz(t)σz/2 +
Bx(t)σx/2. The longitudinal part is defined by the Zee-
man splitting, Bz(t) = g(t)µBB. The time-dependent
gate voltage changes the g-factor by a small value and we
have Bz/~ = ω0 + δ · s(t), where the amplitude δ � ω0;
ω0 = 2πf0 represents the ESR frequency. In this work,
we consider three types of signals [41]: a sinusoidal mod-
ulation, s(t) = cos Ωt, a latching modulation, given by

s(t) =

{
2d, 0 < Ωt/2π < 1− d,
−2 (1− d) , 1− d < Ωt/2π < 1,

(1)

where d is the duty-cycle ratio, and a ramp modulation,
given by the fractional part in {Ωt/2π}. Note that for
a symmetric latching modulation, with d = 1/2, from
Eq. (1), we have s(t) = sgn (cos Ωt). In addition, the
transverse part of the Hamiltonian is defined by the MW
voltage applied to the substrate, Bx/~ = 2G cosωt with
amplitude G and circular frequency ω = 2πf . The mod-
ulation is assumed to be slow, i.e. Ω� ω.

Square-wave modulation.—In figures 2 and 3 we
present the results of our measurements and calculations
for symmetric and asymmetric square-wave modulation
signals. The left panel focuses on the source-drain cur-
rent ISD, showing the current derivative, dISD/df , in its
main panel. The right panel presents the corresponding
theoretical predictions for the qubit upper-level occupa-
tion.

By adding a square-wave MHz modulation signal to
the gate [Fig. 2(a)], the gate voltage, i.e. g-factor, can
be switched between two values, as described by Eq. (1).
Figure 2(d) shows ISD at VG = −0.36 V and square wave
of frequency 0.5 MHz and amplitude 32 mV. Due to the
slow measurement with a time constant (that shows how
fast the measured current changes) ∼ 0.3 s, we observe
the two ESR peaks with two different g-factors for VG
= −0.36 + 0.016 V and −0.36 − 0.016 V, respectively.
By increasing the modulation frequency, the ESR peaks
show a characteristic interference pattern and eventually
a strong (main) peak appears with weak sideband peaks
[Fig. 2(b)]. The strong single peak at f = f0 = 9.01
GHz [Fig. 2(b)] is a result of motional averaging of the
two peaks for the slow modulation [Fig. 2(d)]. A similar
pattern was observed for latching modulation of the en-
ergy of a superconducting qubit in Ref. [16]. Changing
the modulation amplitude shows a similar behavior with

user
Highlight

user
Highlight

user
Highlight

user
Highlight



3

Revised Fig. 2 

2.6

2.7

 

I S
 (

p
A

)

8.96 8.98 9.00 9.02 9.04 9.06
2.6

2.7

f (GHz)

 

I S
 (

p
A

)

1

10

 

 

S
q

. 
M

o
d

. 
F

re
q

 (
M

H
z)

0.5 MHz 

50 MHz 

(a) 

(b) 

1

10

S
q

. 
M

o
d

. 
F

re
q
 (

M
H

z)

d
I S

D
/d

f 
 (

p
A

/G
H

z)
 

0
.5

 
-0

.5
 

P
+

 
0
.5

 
0
 

32 mV VG 

(c) 

(d) 

(e) 

(f) 

(g) 

0.0

0.5

 P
+

8.96 8.98 9.00 9.02 9.04 9.06

0.0

0.5

f (GHz)

 P
+

k = 1 
k = 0 

k = 2 

FIG. 2: Square wave modulation of the spin qubit.
(a) Shape of the rf signal. (b,c,d) The source-drain current
ISD of the device with a square modulation of its full am-
plitude 32 mV added to the gate at VG = −0.36 V through
the high-pass block capacitor. Other conditions are the same
as in Fig. 1. In panel (c) we present the intensity plot of
dISD/df versus the frequency f and the square-wave modu-
lation frequency Ω (log scale from 0.5 to 50 MHz), showing
the evolution from the two ESR peaks into the strong main
ESR peak and weak sideband peaks. Note that the distance
between the main and the sideband peaks (seen in the up-
per area > 10 MHz) is linear in the modulation frequency
Ω. Panels (b) and (d) present the source drain current ISD

at modulation frequencies of 50 MHz and 5 MHz, respec-
tively. (e,f,g) Calculation of the upper-state population of the
qubit under square-wave modulation of its energy. For calcu-
lations, the following parameters were used for all the graphs:
G/2π = 1.1 MHz, Γ1/2π = 0.2 MHz, Γ2/2π = 1 MHz, and
also for the right panels (e-g) here: δ/2π = 24 MHz.

a similar crossover frequency [41].

In order to describe the system, we solve the Bloch
equations with the above Hamiltonian. We assume that
ω � Ω and after a rotating-wave approximation

H1 =
~
2

[∆ω + δ ·s(t)]σz +
~G
2
σx, (2)

where ∆ω = ω0−ω = 2π (f0 − f). Details of the calcula-
tions are presented in [41], cf. Refs. [47, 48]. As a result,
the upper-level occupation probability is readily obtained
from the stationary solution of the Bloch equations:

P+

(
∆ω,

δ

Ω

)
=

1

2

∞∑
k=−∞

G2
k(δ/Ω)

G2
k(δ/Ω)+ Γ1

Γ2
(∆ω−kΩ)

2
+Γ1Γ2

,

(3)
where Gk(x) = G |∆k(x)|, which can be interpreted as
the dressed qubit gap, modulated by the function ∆k(x).
The relaxation and decoherence rates are denoted as
Γ1 = T−1

1 and Γ2 = T−1
2 , respectively. In particular,

for rectangular modulating system with duty-cycle ratio
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FIG. 3: Weighted averaging for the spin qubit ver-
sus the duty ratio d. (a) Shape of a square wave with
d = 20%. (b-d) Similar plot of ISD as in Fig. 2(b-d) but with
a square wave with a 20% duty ratio, which corresponds to
d = 0.2. The modulation frequency is changed from 0.25 to
25 MHz in a log scale. (e-g) Calculation of the qubit upper-
state population under square-wave modulation (d = 0.2) of
its energy. Besides the duty ratio, other parameters are the
same as in Fig. 2(e-g). Note that the main weighted averaged
peak appears again at f = f0 (here f0 = 9.02 GHz), inde-
pendent of the duty ratio. (h) Duty ratio dependence of the
ESR peak heights at Ω/2π = 0.25 MHz for lower frequency,
∆IL, and higher frequency, ∆IH . The ∆IL and ∆IH for
d = 0.2 are indicated in (d). (i) The duty-ratio dependence
among three ESR peaks, i.e. the motional averaged main
peak at Ω/2π = 25 MHz (9.021 GHz), to the ESR peaks of
lower/higher frequency at Ω/2π = 0.25 MHz. The distances
between the peaks, ∆fL and ∆fH , are indicated in (e) for
d = 0.2. (j) Duty-ratio dependence of the contrasts for the
peak heights and distances.

d, we obtain:

|∆k(x)| = 2

π

x sin [π (1− d) (k − 2dx)]

(k + 2 (1− d)x) (k − 2dx)
. (4)

We can interpret the effective Hamiltonian (2) as fol-
lows. The microwave drive dresses the two-level system
resulting in an energy level difference ∆ω; when this
is matched to the k-photon energy of the rf-signal, the
dressed qubit is resonantly excited. Indeed, the upper-
level population in Eq. (3) has maxima at |∆ω| = kΩ
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[18, 49]. With Eq. (3) we generated the interferograms
in the right panels of Figs. 2-4. [41] In particular, for
Fig. 2 we used Eq. (4) with d = 1/2.

Asymmetric modulation.—Changing the duty ratio d
(ratio of the low VG signal duration to the period; for
the previous square wave the duty ratio was 50%), shows
both asymmetric modulation and weighted motional av-
erage, as demonstrated in Fig. 3. Because the modulation
voltage is added through the block capacitor, the areas
of the signal curves below and above the average gate
voltage VG are equal, as shown in Fig. 3(a). Figure 3(d)
shows the ESR under slow modulation of the square-wave
signal with a 20% duty ratio. The two ESR peak heights
are different, reflecting the duty ratio. For fast modu-
lation, the main peak appears at the weighted averaged
frequency [Fig. 3(b)].

We repeat similar measurements with various duty ra-
tios (from 20 to 80%). In figure 3(h) we plot the heights
of the two ESR peaks at lowest modulation frequency.
For each duty ratio, we also plot distances between the
above two peak positions and the motional averaged
main peak position at the highest modulation frequency
[Fig. 3(i)]. Both of the peak heights and distances re-
flect the duty ratios. The ratio of the peak heights and
the frequency distances are plotted in Fig. 3(j), and show
the motional-averaged main peaks, which indeed appear
at the weighted average frequency. The deviations from
linear dependencies in these plots, especially for the duty
ratio of 20%, are due to the gate-voltage dependence of
the ESR peak height. More detailed measurements for
each duty ratio are shown in [41].

We note here the following interesting features of
the weighted motional averaging. The rectangular-pulse
modulation places the qubit in one of the two allowed po-
sitions, and the low-frequency characteristics reflect the
weighted time spent in those two states. For high Ω, the
principal ESR line is situated in-between the two qubit
states, the position of which is independent of the duty
ratio. A counter-intuitive aspect is that the position of
this line does not relate to any of the two qubit states, and
thus is referred to as “motional averaging” [18]. Details
of calculations are presented in [41]. There, it is shown
that the frequency shifts are the following: ∆fL = −2dδ
and ∆fH = 2(1− d)δ, while the peak heights are nonlin-
ear functions of d. These formulas are plotted with solid
lines in Fig. 3(h-j).

Sinusoidal and ramp modulation.—Figure 4(b,c) shows
the effect of the sinusoidal modulation that pro-
duces the Landau-Zener-Stückelberg-Majorana interfer-
ence patten. The modulation amplitude dependence with
fixed modulation frequency shows the radio-frequency-
wave assisted side bands [41]. In the case of a sinusoidal
modulation, the dressed energy gap is given by the Bessel
function of the first kind ∆k(x) = Jk(x).[49] Then, with
Eq. (3) we plot Fig. 4(c). Ramp-wave modulations are
shown in Fig. 4(e,f). An inverse ramp waveform gives
identical results [41]. We note that at low modulation fre-
quency Ω and low detuning ∆ω the agreement is rather
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FIG. 4: Sinusoidal and ramp modulation. (a) Shape of
the rf sinusoidal signal. (b) Source-drain current ISD under
sinusoidal modulation with amplitude 24 mV. Intensity plot
of dISD/df versus the frequency f and the modulation fre-
quency Ω (linear scale from 0 to 80 MHz). (c) Calculation of
the upper-state population of the qubit under the sinusoidal
modulation of its energy. The parameters are the same as for
Fig. 2 besides the amplitude, which here is δ/2π = 30 MHz.
(d) Shape of the ramp wave signal. (e) Source-drain current
ISD under the ramp modulation with amplitude 36 mV. In-
tensity plot of dISD/df as a function of the frequency f and
the modulation frequency Ω (log scale from 0.25 to 25 MHz).
(f) Calculation of the upper-state population of the qubit
under ramp modulation of its energy. The parameters are
the same as for Fig. 2 besides the amplitude, which here is
δ/2π = 27 MHz.

qualitative, which might be due to the rotating-wave ap-
proximation.

Discussion.—We have demonstrated that under cer-
tain conditions, an impurity in a field-effect transistor be-
haves as a single-spin qubit which displays coherent phe-
nomena, such as Landau-Zener-Stückelberg-Majorana in-
terference and motional averaging. The spin-qubit device
is based on a short-channel TFET in which, for an appro-
priate channel length, a three-step tunneling from the n-
type source electrode to the p-type drain electrode occurs
via two localized states in the channel. These localized
states (in a deep impurity and a shallow impurity) form
a double quantum dot in which the spin qubit is formed
in the spin-blockade regime. The g-factor of the spin
can be tuned by the gate voltage, which enables the fast
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modulation of the qubit energy. We demonstrated coher-
ent control by modulating the qubit energy with various
continuous waveforms. In particular, when modulated
by asymmetric rectangular pulses with duty ratio d, we
observed interferograms, which we refer to as weighted
motional averaging. At low frequency, this displays d-
weighted peaks which, at higher frequency, merge into
one peak. To conclude, we summarize the advantages
of the silicon single-spin interferometers: they operate at
relatively high temperature (1.6 K), the g-factor is con-
trolled by the gate voltage (∼ 1%, important for selectiv-
ity of measurements), the relaxation times T1,2 are large,
the fabrication is based on the well-developed techniques
for silicon, such as CMOS, and they can be manipulated
into the ESR and Pauli spin blockade regimes.
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[7] M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and
P. Hakonen, “Continuous-time monitoring of Landau-
Zener interference in a Cooper-pair box,”Phys. Rev. Lett.
96, 187002 (2006).

[8] S. N. Shevchenko, S. Ashhab, and F. Nori, “Landau-
Zener-Stückelberg interferometry,” Phys. Rep. 492, 1–30
(2010).

[9] C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum
sensing,” Rev. Mod. Phys. 89, 035002 (2017).

[10] J. J. L. Morton, D. R. McCamey, M. A. Eriksson, and
S. A. Lyon,“Embracing the quantum limit in silicon com-
puting,” Nature 479, 345–353 (2011).

[11] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Sim-
mons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N.

Coppersmith, and M. A. Eriksson, “Silicon quantum
electronics,” Rev. Mod. Phys. 85, 961–1019 (2013).

[12] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzu-
rak, R. Ishihara, A. Morello, D. J. Reilly, L. R. Schreiber,
and M. Veldhorst, “Interfacing spin qubits in quantum
dots and donors–hot, dense, and coherent,” npj Quan-
tum Info. 3, 34 (2017).

[13] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bo-
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