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We show that in-plane-magnetic-field assisted spectroscopy allows extraction of the in-plane ori-
entation and full 3D size parameters of the quantum mechanical orbitals of a single electron GaAs
lateral quantum dot with sub-nm precision. The method is based on measuring of the orbital en-
ergies in a magnetic field with various strengths and orientations in the plane of the 2D electron
gas. From such data, we deduce the microscopic confinement potential landscape, and quantify
the degree by which it differs from a harmonic oscillator potential. The spectroscopy is used to
validate shape manipulation with gate voltages, agreeing with expectations from the gate layout.
Our measurements demonstrate a versatile tool for quantum dots with one dominant axis of strong
confinement.

A spin in a magnetic field is one of the simplest canon-
ical quantum two-level systems encoding a qubit [1]. To
realize spin based quantum computing, the capability of
addressing individual spin qubits is essential, as demon-
strated in various semiconductor quantum dot devices
[2]. Although significant progress has been made on the
control of spin states, the challenge lies in the lack of
means to adjust the confinement potential, particularly
for dot systems formed in nanowires or by intrinsic de-
fects. Lateral quantum dots, on the other hand, show
excellent flexibility. Defined in a 2D electron gas (2DEG)
by nanometer-scale surface gates, they allow, in principle,
arbitrary and tunable dot shapes [3].

This tunability is important for spin manipulations.
Namely, the dot shape and the related orbital energy
spectrum are directly associated with a variety of spin-
electric related processes. These rely on mixing of spin
and orbital degrees of freedom since the orbital shape
determines the dipole moments connected with spin-flip
transitions. For instance, such mixing presents the pre-
dominant channel for spin relaxation, in GaAs through
both the spin-orbit [3–5], and hyperfine interactions
[6, 7]. Both spin relaxation [3] and spin manipulation
by electric-dipole spin resonance (EDSR) [8, 9] show a
strong dependence on the dot shape and the orientation
in the 2DEG plane and with respect to the magnetic field.
The dependence can be exploited to control both the spin
relaxation time and EDSR frequency [10].

The bottleneck in taking full advantage of this flex-
ibility is that so far there is no direct method to ade-
quately determine the quantum-dot confinement geome-
try. Many previous experiments probed low lying excited
state energies [3, 6, 11, 12]. However, there are character-
istics of the confinement which are difficult to disentangle
from such measurements (the potential anharmonicity),

which are energetically not accessible (the subband spac-
ing) and which are not present in such data at all (the
dot orientation).

Looking for alternative ways to extract these character-
istics is full of obstacles, too: Since the dot is imprinted
into the 2DEG beneath the surface of the device, details
of the dot shape are inaccessible for surface imaging tools,
such as atomic force or scanning tunneling microscopy.
Also, the electric fields from the surface gates will in re-
turn interfere with the probe aggravating such measure-
ments [13, 14]. Further, these methods suffer from inva-
sive back-action of the probe to the sample disturbing the
quantum dot. In principle, nowadays software is capable
of advanced simulations [11, 15]. However, the reliable
input to such simulations is restricted to the design of the
surface gates and the chemical composition used during
the wafer growth. The details of the interfaces, strain dis-
tribution, and, most importantly, impurities and donors
positions are unknown. At the moment, they can be at
best guessed, and included into such simulations by hand.
Formation of unintentional dots, and dots with positions
and shapes differing from the one suggested by the gate
layout, is more a rule than an exception. Finally, the fact
that the dot details often change upon cool downs is a
proof that even though simulations can serve as a rough
guide, they are unable to provide sample-dependent de-
tails.

In this Letter, we present a non-invasive technique
which is able to extract the 3D shape and orientation pa-
rameters of the quantum mechanical orbitals of a quan-
tum dot with sub-nm precision. It is based on a response
of the energy spectrum to an in-plane magnetic field of
varying magnitude and direction. The theoretical prin-
ciples of the method are explained in Ref. 16. Here, we
demonstrate it experimentally. While our quantitative
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FIG. 1: (a) Sketch with electron micrograph of the gate
layout of a cofabricated device shown on top. The GaAs/
Al0.3Ga0.7As heterostructure contains a 2DEG with density
2.6× 1011 cm−2 and mobility 4× 105 cm2/Vs located 110 nm
below the surface. The in-plane field angle φ and wave func-
tion orientation δ are defined with respect to [100], while

δ̃ = δ − 225◦ is the angle between x̂ = [1̄1̄0] and x̂d, the dot
confinement x-axis. (b) Three-step pulse sequence described
in the text. (c) Measurement of tunneling-in rate Γin as a
function of ∆VP exhibiting three excited orbital states at en-
ergies Ex, Ey and Ex,2. (d) Ground-state wave function (left)
and the p-type orbitals for an elongated dot with exaggerated
anisotropy, details in Ref. [17] Sec. 1.

interpretation of the measurements is based on assum-
ing an asymmetric (triangular) 2DEG confinement and
a harmonic in-plane confinement, the method is directly
applicable to any quasi two-dimensional system for which
the unperturbed confinement can be reasonably guessed.

The surface gate layout of the measured device, shown
in Fig. 1(a), is based on Ref. 3. The device is biased into
the single-electron quantum-dot regime, as indicated by
the red ellipsoid. The dot is tuned to couple to the left
reservoir only, with a tunnel rate between 1 and 100 Hz.
An additional quantum dot, located directly adjacent to
the main dot, is serving as a charge sensor [18, 19], giving
a change of sensor conductance of up to 100% per elec-
tron in the main dot. The sample can be oriented with
essentially arbitrary angle with respect to an in-plane
magnetic field up to 14 T using a piezoelectric rotator.
Using standard van der Pauw measurements, the mag-

netic field is shown to deviate less than 1.3◦ out of the
2DEG plane, thus rendering the out-of-plane component
negligible [6]. Measurements are done in a dilution refrig-
erator with an electron temperature of 60 mK [20–22].

The orbital energies are measured by pulsed gate spec-
troscopy using a three-step pulse sequence. Namely, an
additional voltage ∆VP is applied to the center plunger
gate CP , on top of the static gate voltage VP , see
Fig. 1(a) [3, 23, 24]. As illustrated in Fig 1(b), the se-
quence consists of initialization, charging and read-out
steps, see also Ref. [17] Sec. 5. The elastic tunnel rate into
the empty dot increases sharply when an orbital state be-
comes resonant with the chemical potential µ of the reser-
voir. By measuring the dot-reservoir tunnel coupling for
varying ∆VP , individual excited orbital states can be dis-
tinguished. An example is shown in Fig. 1(c) exhibiting
three excited orbital states. The ground state, which cal-
ibrates ∆VP = 0, couples much weaker to the reservoir
(ΓGS ∼ 10 Hz) compared to the excited orbital states, at-
tributed to the increased spatial extent of higher orbitals
[25, 26]. The exponential decay in the tunnel rate of
the excited states with increasing ∆VP [dashed curves in
Fig. 1(c)] is due to an increasing tunnel barrier. [27–29].
Finally, we note that our method requires that the probe
voltage does not change the confinement potential. We
conclude that this assumption is well met, as the pulse
∆Vp is much smaller (typically, tens of mV, applied only
on one gate) than voltages required to change the dot
shape substantially (typically hundreds of mV, applied
on all gates), as deduced from Fig. 2a below.

We assume that the dot confinement separates into a
2D harmonic oscillator part for the in-plane coordinates
and a much stronger confinement for the heterostrocture
growth direction (ẑ) coordinate:

H =
p2

2m
+
h̄2

2m

(
x2d
l4x

+
y2d
l4y

)
+ v(z). (1)

Here, p is the momentum operator, h̄ the reduced Planck
constant, m the effective mass, and lx,y are the confine-
ment lengths along the main axes x̂d and ŷd of the in-
plane confinement. These axes are in general rotated
from the crystal axes [100] and [010] by an angle δ, see
Fig. 1(a,d). For simplicity, we introduce δ̃ = δ − 225◦

as the angle between potential axis x̂d and device axis
x̂ = [1̄1̄0]. In the model described by Eq. (1), the excita-
tion energies are Ex,y = h̄2/ml2x,y and the ground-state
wave function can be represented by a disk-like ellipsoid.
The two lowest excited states correspond to p-like or-
bitals aligned along two perpendicular axes x̂d, ŷd, as
shown in Fig. 1(d).

Within this model, the parameters Ex, Ey, and δ char-
acterize the dot shape, and vice versa, control of these
parameters indicates dot-shape tunability. This is what
we demonstrate next. Applying appropriate voltages on
the surface gates, the dot can be elongated either in the
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FIG. 2: (a) Orbital excitation energies Ex (green) and Ey

(purple) as a function of Vshape. The schematics give a qualita-
tive picture of the excited orbital wave functions along the x̂-
direction (green) and ŷ-direction (purple) for the three shapes
indicated by the arrows. Less exaggerated wave functions are
shown in Ref. [17] Sec. 1. Orbital excitation energies for a
magnetic field applied along the y-direction for two extreme
dot shapes (b) elongated along x̂ and (c) elongated along ŷ,
for Vshape as labeled. The data are fitted to Eq. (4), giving
λz = 6.3± 0.3 nm and Ez = 28.6± 3 meV [30].

x̂- or alternatively in the ŷ-direction [3]. For instance, the
dot can be squeezed in the ŷ-direction by applying more
negative voltages on the plunger gates LP, CP and RP,
see Fig. 1(a). To keep the ground-state energy constant,
these changes are compensated by applying less negative
voltages on the other gates LW and RW, which leads to
an expansion of the wave function in the x̂-direction. We
introduce a shape parameter Vshape to denote the full set
of gate voltages corresponding to a particular configura-
tion (see Fig. 2), with the numerical value of Vshape taken
to be the voltage on gate CP.

The two lowest orbital excitation energies are shown
in Fig. 2(a) as a function of the dot shape Vshape. Upon
making Vshape more negative, thus squeezing the dot in
the ŷ-direction, one of the two energies increases, thus
identified as the ŷ state. The other energy decreases,
and thus has to be the x̂ state, as labeled in Fig. 2.
Interestingly, at Vshape ∼ −500 mV, we find Ex ≈ Ey,
indicating a circular, isotropic wave function in the 2D
plane. Such shape manipulation by gate voltages is lim-
ited on one hand by the minimum voltage needed to de-
plete the 2DEG underneath the surface gates, and on the

other hand by the gate leakage threshold at more nega-
tive gate voltages. We emphasize that throughout the
shape manipulation, the tunneling rate to the reservoir
is held approximately constant. For each dot shape, the
relevant lever arm is measured, providing the gate volt-
age to energy conversion in order to obtain the excited
state energies from pulsed gate spectroscopy, see Ref. [17]
Sec. 4 for details.

From such data, however, there is no estimate of the
tilt angle δ̃ or how it depends on Vshape—other than that
it is probably not too big. It is natural to expect that, as
the dot is being squeezed, the wave function is also shifted
and possibly somewhat rotated in space, depending on
the detailed potential and disorder landscape present. In
addition, we note that the subband excitations Ez �
Ex,y are energetically out of reach of this pulsed-gate
spectroscopy method, so that little can be said about the
size of the dot orbitals along the growth axis. We are
now going to show how this missing information can be
revealed; this is the main advance that our work makes.

To this end, we exploit the effects of a strong in-plane
magnetic field B applied along an in-plane direction b̂,
which makes an angle φ with the [100] crystallographic
axis, see coordinate system in Fig. 1(a). In Ref. [16], we
show that the leading order effect can be expressed as a
correction to Eq. (1) of the following form [31]

δH = − Φ2

2m

[
p ·
(
b̂× ẑ

)]2
. (2)

This interaction is the basis for our spectroscopy. Its
strength scales with the magnetic flux Φ penetrating the
2DEG due to its finite width. Explicitly,

Φ =
e

h̄
Bλ2z, (3)

where e > 0 is the elementary charge and λz is the
effective width of the wave function along the growth
direction. We analyze the connection between a nomi-
nal width and the effective width of a 2DEG for several
confinement profiles, namely triangular, harmonic, and a
square potential well [16]. Also, we note that flux thread-
ing was previously studied in open dots [32–34].

For typical 2DEGs and magnetic fields, the flux is
small: Φ � 1 [30]. Treating Eq. (2) as a perturbation to
Eq. (1), the energies change by

δEx,y = −Φ2

2

h̄2

ml2x,y
sin2(δx,y − φ). (4)

Here, we denoted δx,y as the corresponding excited or-
bital directions (with respect to [100]). They follow from
Eq. (1) as δx = δ and δy = δ + π/2.

First, we apply a strong magnetic field along the y-
direction for the two most elongated shapes available,
see Fig. 2(b) and (c). For sufficiently weak confinement
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along one direction, a second excited state Ex,2 or Ey,2

also becomes accessible. While Ex,2 ∼ 2Ex for the dot in
Fig. 2(b), Ey,2 is slightly lower in energy than the second
harmonic of Ey, as seen in Fig. 2(c). For this configura-
tion, the voltage on the nose N and all plunger gates are
only barely sufficient to deplete the 2DEG, which could
lead to a softening of the confinement potential along ŷ.
Looking at the field dependence, we make the striking ob-
servation that Ey remains constant for both shapes while
Ex clearly changes with magnetic field. This is consistent
with the notion that the orbital effects of a magnetic field
are given by a Lorentz force, which is a vector product
of the velocity with the field, thus leaving motion along
the direction of the applied field unaffected. This agrees
with the prediction of Eq. (2), giving that x̂d ≈ x̂, mean-
ing that the dot is oriented along the device axes. The
invariance of Ey indicates that the corresponding orbital
is rather well aligned with the magnetic field and there-
fore the y-axis of the device. Comparing the two cases
in Fig. 2, we emphasize that, going from panel (b) to
(c), the quantum dot was in fact rotated by 90◦, thus
demonstrating a gate-induced quantum dot rotation. In-
deed, this is expected from the gate voltage dependence
Vshape, and is here validated in real space with the in-
plane field spectroscopy.

By fitting the data to Eqs. (3) and (4), we can extract
the effective width λz, and thus the size of the quan-
tum dot along the growth direction. We can convert
the latter, under a rather mild assumption that the het-
erostructure confinement is triangular, to the interface
electric field Eext and the subband energy splitting Ez.
This in turn allows for the evaluation of the spin-orbit
fields. Namely, from λz = 6.3 ± 0.3 nm we get the spin-
orbit lengths lr = 2.1 ± 0.3 µm and ld = 3.2 ± 0.3 µm
for Rashba and Dresselhaus interaction, respectively [35].
Using an independent fit from the directional variation of
the spin-relaxation time, Ref. [6], gave lr = 2.5± 0.2 µm,
and ld = 4.1 ± 0.4 µm illustrating the agreement. We
point out that, apart from determining the spin-orbit in-
teractions strengths, the width of the 2DEG determines
also the strength the electron Fermi-contact interaction
with nuclear spins. Thus, knowledge on the quantum-dot
size along the growth direction is essential for quantita-
tive analysis of spin properties, such as relaxation [6].

We now turn to a precise quantification of the dot ori-
entation. It can be done by measuring the excitation en-
ergies at a magnetic field with fixed magnitude and varied
orientation. Figure 3 presents such data for B = 8 T and
a more symmetric dot. The energies show a sinusoidal
behavior as expected from Eq. (4). The two states os-
cillate out of phase, proving that they represent orbitals
oriented perpendicular to each other, see also Ref. [17]
Sec. 3. For an elongated (quasi-1D) dot, the states would
oscillate in phase [16]. Beyond confirming that our dot is
indeed close to a symmetric one, we can specify its orien-
tation in detail. By fitting the data of Fig. 3 to Eqs. (1)
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FIG. 3: Spin-resolved excitation-energies measured at mag-
netic field of a fixed magnitude 8 T and varying direction in
an almost circular quantum dot (Vshape ∼ −550 mV in Fig.
2). The solid curves show a fit according to Eq. (4) for each
orbital state (separately for the green and purple data) as-
suming a direction independent Zeeman energy. Since the
g-factor anisotropy is small [36], this is a very good approx-

imation. The fit gives δ̃x = −8◦ ± 4◦, δ̃y = 62◦ ± 4◦ and
λz = 6.1± 0.3 nm (Ez = 30.7± 3 meV)[30].

and (2), we obtain δ̃ = −8◦ ± 4◦, indicating the dot is
slightly tilted away from the device coordinate system.
We note that even such modest misalignment can have
large impact on the qubit quality [10], and on character-
ization of the spin-orbit fields [4].

Before concluding, we look at the assumption that the
in-plane confinement is a quadratic function of coordi-
nates, adopted in Eq. (1). It has been used from the
onset of quantum-dot investigations [11], as a practical
choice for which analytical solutions are known [37–39].
Compared to its prevalent use, the evidence on such con-
finement shape is less abundant, and has been up to
now restricted to checking the equidistant energy spac-
ing of excited states of a harmonic oscillator. The data
in Fig. 3 can provide additional information. Namely,
fitting each of the accessible orbitals to Eq. (4) individu-
ally, we can extract the x,y orbital-specific angle δx,y. In
principle, one can map-out the dependence of δ on the
single-particle state energy, if more excited states are ac-
cessible. Here, we find δy − δx ≈ 70 ± 8◦. It is different
from 90◦, a value for a purely quadratic potential, and
here we have quantified by how much.

In summary, we measure excitation energies in a single-
electron lateral quantum dot with in-plane magnetic
fields of varying orientation. We show that such mea-
surement can determine the orientation of the dot, and
extract its single-particle quantum-mechanical confine-
ment parameters. In particular, this means that for a
given orbital, one can assign a size and orientation within
the 2DEG plane, as well as its extension along the growth
direction with sub-nm resolution. The information on the
quantum dot shape has an immediate use in correct quan-
tification of the spin-orbit fields as well as the strength
of the electron-nuclear Fermi contact hyperfine interac-
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tion. We note that the method is directly applicable to
any quasi-2D dot, also in other materials, and more so-
phisticated structures, for example, triple-quantum-dot
devices with non-collinear arrangement, as well as dots
with higher electron occupations, where Hartree-Fock or-
bitals could be accessed in the same way.
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