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We propose that propagating one-dimensional Majorana fermions will develop in the vortex cores

of certain iron-based superconductors, most notably Li(Fei_zCos)As.

A key ingredient of this

proposal are the 3D Dirac cones recently observed in ARPES experiments [P. Zhang et al., Nat.
Phys. 15, 41 (2019)]. Using an effective Hamiltonian around the I' - Z line we demonstrate the
development of gapless one-dimensional helical Majorana modes, protected by C4 symmetry. A
topological index is derived which links the helical Majorana modes to the presence of monopoles
in the Berry curvature of the normal state. We present various experimental consequences of this
theory and discuss its possible connections with cosmic strings.

Recent experimental [I-6] and theoretical [7-9] ad-
vances suggest that iron-based superconductors (FeSCs)
can sustain fractionalized excitations. Building on these
ideas, here we propose the emergence of dispersive, heli-
cal Majorana states in the flux phase of certain FeSCs.

Twelve years ago, two major discoveries occured in
condensed matter physics: the observation of high tem-
perature superconductivity in the iron-pnictides [10, 11]
and the discovery of topological insulators (TIs) [12].
FeSCs have challenged our understanding of strongly
correlated electron materials, offering the possibility of
practical applications. Topological insulators have trans-
formed our understanding of band physics [13, 14] and
have led to the discovery of symmetry protected Weyl
and Dirac semimetals [15]. Remarkably, those materials
emulate certain aspects of elementary particle physics in
solid state experiments.

Yet despite the excitement in these two new fields, until
recently, there has been little overlap between them. Iron
based superconductors are layered structures, in which
d-orbitals of the iron atoms form quasi-two dimensional
bands. The spin-orbit coupling (SOC) in the d-bands
was long thought to be too small for topological behav-
ior. However, the recent discovery of marked spin-orbit
splitting in photoemission spectra [16, 17] has overturned
this assumption, with an observation [1, 7, &, 17] that
at small interlayer separations, an enhanced c-axis dis-
persion drives a topological band inversion between the
iron d-bands and ligand p, orbitals. When the chemi-
cal potential lies in the hybridization gap between the
d and p-bands, the corresponding topological FeSCs sus-
tain Majorana zero modes where-ever magnetic flux lines
intersect with the surface, Fig. 1 (c). These excitations
have been observed [3-6]. Here we demonstrate that on
additional doping, topological behavior is expected to
give rise to dispersive, helical Majorana fermions, Fig. 1
(e) along the cores of superconducting vortices. Obser-
vation of these excitations would provide an important
confirmation of the topological character of iron based
superconductors, yielding a new setting for the realiza-
tion of Majorana fermions.
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FIG. 1. Topology of FeSCs. (a) Band structure in the normal
state. For small lattice spacing in ¢ direction, p. orbitals cross
the d-states along the I'-Z line. When the chemical poten-
tial is near the spin-orbit induced gap (marked by a pink disk
around 0.1 eV) the ground state is a topological supercon-
ductor. (b) In a vortex core, this implies a gapped dispersion
of bulk Caroli-Matricon-deGennes states with (c) Majorana
zero modes (green pancakes) at the surface termination. At
higher doping, when the Fermi energy lies in the vicinity of
the Dirac node (marked by a yellow disk around 0.17 eV), (d-
e) Cy symmetry protects helical Majorana states dispersing
along the vortex cores.

Helical Majorana fermions in one dimension corre-
spond to a pair of gapless counter-propagating fermionic
excitations, first proposed as excitations within the “o-"
vortices of superfluid *He-B  [15]. Whilst these exci-
tations have not been observed, possibly because the
energetics of 3He-B favors less symmetric v—vortices
[19, 20], which do not support helical Majorana modes,
we here propose an alternative realization in FeSCs. Re-
cent experimental advances (Table I) provide evidence
for chiral (i.e. unidirectional) Majorana modes at the
boundaries of various two dimensional systems, including



superconducting-quantum anomalous Hall heterostruc-
tures [21], 5/2 fractional quantum Hall states[22] and the
layered Kitaev material a-RuCls [23].

Majorana modes in FeSC. Here we summarize the
main physics leading to the appearance of helical Ma-
jorana subgap states in the flux phase of FeSC, when
the magnetic field is aligned in ¢ direction. We shall
concentrate on a case where the vortex core size, (deter-
mined by the coherence length), is much larger than the
lattice spacing, so that vortex-induced interpocket scat-
tering can be neglected. This permits us to concentrate
on the region of the Brillouin zone (BZ) which harbors
the topological physics, in this case the I' — Z line.

Along this line, the relevant electronic states are clas-
sified by the z—component of their total angular momen-
tum J, = L, +S,. We may exploit the fact that the low
energy Hamiltonian close to the T' = Z line [1, 8, 34] fea-
tures an emergent continuous rotation symmetry. Three
pairs of states are important, |d(ziiy)z ), |d(z—iy)= 1)
(With Jz = i1/2)7 |p27T>7|pszr) (a'lso Jz = :1:1/2) and
|d(zriy)z 1) 5 1d(zmiy)= +) (= = £3/2). Their dispersion is
shown in Fig. 1 along with the d,, bands, we used the
low energy model of Ref. [3].

We briefly recapitulate the appearance of localized Ma-
jorana zero modes. The j, = £1/2 p, states can hybridize
with the corresponding |d(g+iy)= {),[d(aiy)- 1) states at
intermediate k., leading to an avoided crossing of the
bands [pink circle at 0.1 eV in Fig. 1 a)]. Since the p
and d orbitals carry opposite parity, the band-crossing
leads to a parity inversion at the the Z-point. The sys-
tem is therefore topological [35]. In the superconducting
state, this system is then expected [33] to host topolog-
ical surface superconductivity, developing localized Ma-
jorana zero modes at the surface termination of a vortex,
Fig. 1 ¢). These Majorana zero modes can be alterna-
tively interpreted as the topological end states of a fully
gapped, 1D superconductor inside the vortex core [3]. In
the bulk, where k, is a good quantum number the vortex
hosts fermionic subgap states for each k, near the normal
state Fermi surface, Fig. 1 b). In particular, the lowest
lying states carry angular momentum ! = 0 and develop
a topological hybridization gap upon inclusion of SOC.

However, bulk FeSCs can also support dispersive heli-
cal Majorana modes in their vortex cores. To see this, we
now turn to the situation where the chemical potential
lies near the Dirac cone, highlighted by a yellow circle at
about 0.17 eV in Fig. 1 a). At this energy, semimetallic
Dirac states are observed in ARPES [1]: these occur be-
cause the different j, quantum numbers of |p.,1),[p:, )
and |d(z1iy)> 1) s |d(z—iy)- |) DPrevent a hybridization on
the high symmetry line leading to a Hamiltonian of the
(tilted) Dirac form H(k) = H, (k) ® H_(k) [1, 31],

Ho(k) - Mpy(ky)  +vky +ivk, (1)
* svk, —ivk, Mg(k.) )’

where H,(k) (H-(k)) acts in the subspace of pos-

itive (negative) helicity spanned by [p.,1),|d(z+iy)> 1)
(Ipz54) s ld(z=iy)= 4)). The dispersion M, (k.), Ma(k.) of
the relevant p and d orbitals is plotted in Fig. 1 a) and v
is the transverse velocity.

We now assume that below T, a spin-singlet, s-wave
superconducting phase develops. In an Abrikosov lattice
of vortex lines, translational symmetry allows to solve
the problem at each k, separately. At the particular val-
ues of k, = £k}, where M, (£k}) = My(+k}), Hy and H_
separately take the form of a TI surface state. Conse-
quently [33], for each helicity a non-degenerate Majorana
zero mode appears in each vortex. Now in contrast to the
case of Fig. 1 b), these two modes carry different angu-
lar momenta [ = +1 so that they can not be mixed by
any perturbation which respects the C4 symmetry. This
leads to the gapless linear helical dispersion near +kJ.

Topological origin of helical Majorana modes. The
crystalline topological protection of the helical Majo-
rana modes in the flux phase of FeSC can be under-
stood as follows. First, we note that in the normal state,
crystalline symmetries, in particular Cy, impose the de-
coupling of Hamiltonian (1) into the direct sum of two
decoupled helical sectors. Within H, (H-), two Weyl
points of opposite topological charge +1 (F1) appear at
(0,0,+k}), Fig. 2 a). Since crystalline symmetry ensures
perfect decoupling, it is favorable to concentrate on a
given sector in these explanations and superimpose both
sectors in the end. The Berry flux connecting the two
Weyl points implies a quantum anomalous Hall state for
k. € (=kZ,kZ) [36]. The resulting family of chiral edge
states forms a Fermi arc in the surface BZ, Fig. 2 b,c). In
view of their chiral nature, Fermi arc states can only ter-
minate at a k, which sustains critical bulk states - i.e. at
the projection of the Weyl points. From the boundary
perspective, their presence is ensured by the topological
phase transition at +k7.

We now turn to the superconducting case in the flux
phase, for which a vortex core represents a normal state
cylinder inside of a fully gapped superconducting back-
ground. At each k, € (-kZ, k) the boundary of the vor-
tex core resembles an interface between quantum anoma-
lous Hall state and topological superconductor. This
leads to a chiral Majorana encircling the cylinder - i.e. the
Majorana analog [1, 37] of Fermi arc states (purple cir-
cles, Fig. 2, d). As explained above, edge states may only
disappear as a function of k£, when the bulk is critical,
therefore it follows that topologically protected vortex
core subgap states must cross the Fermi energy at +k.

We conclude this discussion with three remarks. (1)
For typical vortex core diameters & the chiral Majorana
edge states are gapped by finite size effects, yet the above
topological argument is still valid, Fig. 2 e). In partic-
ular, as in the case of a 3D TI surface, the magnetic
flux prevents the critical bulk (= vortex core) states at
+k? from gapping. A different situation occurs in *He-
A, where the conservation of the spin projection protects
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boundary of 2D systems

H vortex in 3D system

chiral Exp.| QAH-SC [21], a-RuCl3 [23], v = 5/2 QH [22] Exp.| N/A
Th.| p+ip SC [24] (Sr2RuOy4 [25]?) [AZ cl. D [13]] Th.| TI-SC heterostructure [26][Weyl SSM]
helical Exp.| N/A Exp.| N/A
Th.| NCS [27-30], sx SC4+SOC [31] [AZ cl. DIII [13]] || Th.| *He-B [18], LiFe;_,Co.As (this work) [Dirac SSM]

TABLE I. Phases of matter which sustain 1+1D helical or chiral Majorana fermions. We present all experimental evidence,
the first material specific theoretical proposal and generic classes of systems (in square brackets). We omitted Majorana modes

which occur at fine-tuned critical points, e.g. at topological phase transitions [8,

] or at S-TI-S junctions with flux = [33].

Abbreviations: “AZ cl.” = “Altland-Zirnbauer class”, “Exp.” = “Experiment”, “NCS” = “non-centrosymmetric superconduc-
tor”, “QAH” = “Quantum anomalous Hall”, “QH” = “Quantum Hall”, “SC”=“superconductor”, “SSM” = “superconducting

semimetal”, “Th.” “Theory”.

the non-dispersive Fermi arc states for all k, between the
projection of Weyl points [20, 34, 38]. (2) Taking into ac-
count that H, and H_ sectors have opposite helicity, the
actual state for k, € (-k;, k) is a quantum spin Hall
insulator, and Fermi arc states are helical rather than
chiral. (3) For weak misalignment of the flux line and
the c-axis, mixing between decoupled helical sectors H
is negligible. Under this assumption, the topological pro-
tection of helical modes persists.

Bogoliubov-deGennes (BdG) Hamiltonian. To confirm
these heuristic arguments, we have perturbatively diago-
nalized [34] the BAG Hamiltonian of a topological FeSC
with a single vortex. Here, we concentrate on states near
k; and employ a simplified Hamiltonian H = H, ® H_,
where

M = (Hy - )7 + A(F) Ty + A ()7 2)

The Fermi energy p is measured from the Dirac point,
A(r) = |A(r)|e? is the superconducting gap (JA(oo0)]
A) and Tz,y,» are Pauli matrices in Nambu space and 7, =
(7¢ £i7y)/2. Assuming circularly symmetric vortices, we
expand the wave function in angular momenta, seeking
solutions of the form ¥, = Y, eikzz”in(ﬁ)\I!il)(r, k.),
where the precise form of the diagonal matrices U, () is
given in the supplement. At [ =+1 a chiral symmetry in

the [-th sector Hil) allows us to explicitly construct an

unpaired zero energy solution \I/(fl) (r, k%) in each helical
sector. We use these solutions to perturbatively include
momenta k, — k>, a Zeeman field gupB/2 and orbital

dependent gaps A, - Ay = A # 0. By projecting onto
the low-energy space we obtain the effective dispersions

3)

This confirms the heuristic argument for the appear-
ance of helical Majorana modes and demonstrates that
perturbations merely shift k. A similar result holds
near —k;, so that in total two pairs of helical Majorana
modes occur, Fig. 1 d). In the limit g > A we obtain
Upm ~ A28k; [Md(k;) - Mp(k;)]/,uQ and Wpr ~ A/ILL The
velocity of helical Majorana modes in vortices of He - B
has an analogous parametrical dependence [18].

Ei(kz) = i[UM(kz - k:) - wM(;A + g,U'BB/2:|'

Index theorem. We now demonstrate the link between
the helical Majorana modes and the Berry flux between
the two pairs of Weyl points, Fig. 2. While several topo-

logical invariants were proposed [39-42] to describe dis-
persive Majorana modes, we here employ a generalization
of an index introduced by Volovik [13] for vortices in *He.

Our index measures the imbalance between the number
of states of opposite helicity at a given momentum k.,
N(k,)=[N_(k,)— Ny(k.)]/2, where

Ny (k2) = S 0[-E=(k.)] = Im f: %“Tr[gi(w —i0)]e?"
(4)

counts the number of states with given helicity in the
Fermi sea (G.(z) = [z —H.(k.)]™ and n labels quantum
numbers). In a fully gapped system N(k,) is constant
as a function of k,. In contrast, the presence of helical
Majorana modes, Fig. 1 d), implies a jump N (kJ +0%) -
N(k:-07)=1.

We now relate N(k,) to the quantized spin Hall con-
ductivity at a given k, using a semiclassical expansion,
which is valid for smoothly varying A(r). In the eigen-
basis of the normal state Hamiltonian H,(p) |up¢ ) =
€¢,+(P) [upe,+) the BAG Hamiltonian in each band takes
the form H¢ . = d¢. -7 (where the transverse compo-
nents of d describe intraorbital pairing). In the follow-
ing argument, we drop the band and helicity indices
¢ and + and employ a Wigner transform [34, 44] so
that d(R,P) = (ReA(R),-ImA(R),e(P) — ). Due
to the algebra of Pauli matrices, the Green’s function
G(w;R,P) =[w-d-7]! contains a commutator of op-
erator convolutions (denoted by o)

G(wi R, P) = (w+d-7)o[w?~d - Zeancldusdp]re] . (5)

The gradient expansion of the convolution is
[dody] (R, P) =i (Vxdy - Vpdy,—Vpd, Vxdy)
+iQ.6. - (Vxda x Vxdy). (6)

Here, Q. =i (0p,up|0p, up) —i(0p, up|Op, up) is the Berry
curvature. Note that within our gauge invariant formal-
ism, the semiclassical coordinates R, P are kinematic —



normal state

superconducting vortex

FIG. 2. Topological origin of helical Majorana modes. (a)
Normal state BZ with helicity resolved Weyl nodes. (b) Sur-
face BZ and Fermi arc. (c) Partial real space representation of
a cylindrical Weyl semimetal. Fermi arc states (purple circles)
terminate at topological transitions at +k; with delocalized,
critical bulk states (green and blue pancakes). (d) A fat vor-
tex: a normal state cylindrical core (red) embedded in a fully
gapped superconductor (light blue). (e) A realistic thin vor-
tex: Fermi arc states are finite size gapped, but the m Berry
phase at +k} protects the critical states in the core [33, 34].
(f) The index N(k.), Eq. (4) (purple, thin), which we semi-
classically relate to ozy(k.), Eq. (7) (red, thick).

this leads to the appearance of 2, in addition to the
Poisson bracket [45].

We evaluate N (k) for an isotropic vortex of winding
v, to leading order in gradients. The vortex enters Eq. (6)
as Vxdy x Vxdy, = v,é,[Or|A(R)[*]/2R. Performing the
radial integration and restoring the band and helicity in-
dices, leads to the result N.(k.) = —vy04y,.(k.), where

7k =3 |

00+ ()6(-eca (k). (7

In this expression, Q$*(k) and e, are evaluated in
the plane at constant k,. It follows that N(k,) =
vylog, (k.)—0,,(k.)]/2 is given by the normal state spin
Hall conductivity which establishes the topological origin
of the jump in the Fermi surface volume, Fig. 2 f).
Ezperimental realization. We now summarize the
topological features of iron-based superconductors ob-
served to date. Topological Dirac surface states have
been detected in Fe(Te,Se;_,) and Li(Fe;_,Co,)As us-
ing (S)ARPES, both in the normal and superconduct-
ing states [2], while photoemission evidence for 3D Dirac
semimetallic bulk states in the normal state was also re-
ported in Ref. [I]. Moreover, zero bias peaks in vor-
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tices of the flux phase of Fe(Te,Sei_,) [3, 5, 6] and
(Lij_Fe,;)OHFeSe [1] have been tentatively identified
as Majorana bound states (see Fig. 1 ¢)). However,
the identification is still contraversial, and other groups
have questioned [16] whether the bound-states are con-
ventional Caroli-deGennes-Matricon [17] states. Finally,
a robust zero bias peak, akin to a Majorana bound
state was also reported to occur at excess iron atoms of
FeTe [18] — an effect possibly due to trapped fluxes [19].
These experimental observations provide the foundation
our theoretical prediction of helical Majorana modes in
the vortex cores of FeSC Dirac semimetals. Moreover, a
successful experimental observation of helical Majorana
modes in FeSC could be used as independent experimen-
tal confirmation of the topological paradigm proposed for

FeSC.

Li(Fe;_,Co,)As, in which 3D bulk Dirac cones were
observed in (S)ARPES at a doping level of x = 0.09 [1],
is a strong candidate for these Majorana modes. It ex-
hibits a T.(z = 0.09) ~ 9K [50] and, like all FeSC, is
a strongly type-II superconductor. To get an insight of
typical experimental scales we compare to STM stud-
ies [51, 52] of vortices in the parent compound LiFeAs
(here T, = 18K is larger but comparable). Vortices are
observable at B > 0.17T corresponding to typical vortex
spacing of [ < 80 nm, while the core radius is £ ~ 2.5 nm.
Therefore, intervortex tunneling, which would gap [53]
the zero modes is expected to be weak. Furthermore,
the large ratio A/Er ~ 0.5...1 implies that the helical
Majorana band should be well separated in energy from
conventional Caroli-deGennes-Matricon states [17].

A pair of helical Majorana modes displays universal
thermal conductivity of kg = LTe?/h where £ = 72k% /3>
is the Lorenz number [54], and the observation of this lin-
ear thermal conductivity is a key prediction of our theory.
In the flux phase, each of the ®/® vortices hosts 2 pairs
of Majoranas, so that the linear magnetic field depen-
dence kioy = 260®P/Pg of the total heat transport along
the magnetic field direction can be easily discriminated
from the phonon background. A similar effect occurs in
the specific heat C' = 2¢o®/® with ¢o = 7k%T/3vps. Fur-
thermore, STM measurements are expected to detect a
spatially localized signal in the center of the vortex, with
nearly constant energy dependence of the tunneling den-

sity of states v(E) B0 1/mvnr.

Summary and Outlook. In conclusion, we have demon-
strated that propagating Majorana modes are expected
to develop in the vortex cores of iron-based supercon-
ductors, see Fig. 1 e). These states are protected by
crystalline Cy symmetry, but generic topological consid-
erations, Fig. 2 and Eq. (7) suggest they will be robust
against weak misalignments. A key signature of these
gapless excitations would be an dependence of various
thermodynamic and transport observables on the den-
sity of vortices and magnetic field.



We conclude with an interesting connection which de-
rives from the close analogy between superconducting
and superfluid vortices and cosmic strings [20]: line de-
fects thought to be formed in the early universe in re-
sponse to spontaneous symmetry breaking of a grand
unified field theory (GUT). Defects capable of trapping
dispersive fermionic zero modes [55] may occur in spec-
ulative SO(10) GUTSs but also in standard electroweak
theory [56, 57] and in either case the interaction of cosmic
strings with magnetic fields leads to a sizeable baryogen-
esis. Helical Majorana modes in the vortex of FeSC may
permit an experimental platform for testing these ideas.

Note added. Two preprints [58, 59] appeared on the
arXiv simultaneously to ours and present consistent re-
sults on 141D Majorana modes in vortices of FeSCs.
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