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We present first-principles calculations of the rate of energy exchanges between electrons and ions
in nonequilibrium warm dense plasmas, liquid metals and hot solids, a fundamental property for
which various models offer diverging predictions. To this end, a Kubo relation for the electron-ion
coupling parameter is introduced, which includes self-consistently the quantum, thermal, non-linear
and strong coupling effects that coexist in materials at the confluence of solids and plasmas. Most
importantly, like other Kubo relations widely used for calculating electronic conductivities, the
expression can be evaluated using quantum molecular dynamics simulations. Results are presented
and compared to experimental and theoretical predictions for representative materials of various
electronic complexity, including aluminum, copper, iron and nickel.

The last decade has seen remarkable progress in our
ability to form and interrogate in the laboratory materi-
als under conditions at the confluence of solids and hot
plasmas in the so-called warm dense matter regime [1, 2].
These experimental advances severely challenge our ar-
senal of theoretical techniques, simulation tools and an-
alytical models. In addition to including the coexisting
quantum, thermal, disorder and strong Coulomb interac-
tion effects, theoretical approaches are needed that can
also describe non-equilibrium conditions [3–14]. A par-
ticularly important property is the electron-ion coupling
factor that measures the rate of energy exchanges be-
tween electrons and ions [5]. Indeed, experiments typi-
cally produce transient, non-equilibrium conditions and
measurements may be misleading if recorded while the
plasma species are still out of equilibrium. Moreover, like
the electron-phonon coupling, the electron-ion coupling
may be a unique indicator of the underlying electronic
structure and of the basic interaction processes occuring
in the warm dense matter regime. Remarkably, while
even for simple materials various models offer diverging
predictions (see table I), the electron-ion coupling factor
is now accessible to experimental measurements thanks
to the diagnostic capabilities offered by the new genera-
tion of x-ray light sources [6–10].

Here, we use a combination of first-principles theory
and ab-initio molecular dynamics simulations to calcu-
late the electron-ion coupling of materials under warm
dense matter conditions. In the same way as with the
now routine ab-initio calculations of electrical and ther-
mal conductivities [22–24], the approach offers a very use-
ful comparison with the experimental measurements and
a useful test of theories, it gives insight into the underly-
ing physics, and it permits an extension into conditions
not covered by the experiments. The electron-ion cou-
pling is related to the friction coefficients felt by indi-
vidual ions due to their non-adiabatic interactions with
electrons. Each coefficient satisfies a Kubo relation given
by the time integral of the autocorrelation function of

the interaction force of an ion with the electrons, which
is evaluated using density functional theory (DFT) based
quantum molecular dynamics simulations. In this Letter,
we outline the underlying theory and present results for a
set of relevant materials and physical conditions. Details
of mathematical proofs and algorithms will be presented
in an extended manuscript [25]. Below, h̄ is the reduced
Planck constant, kB is the Boltzmann constant.
We consider a material of volume V containing one

atomic species. The material is described as a two-
component system comprised of ions (mass mi = Amu,
number density ni = Ni/V , charge Ze) and of electrons
(mass me, density ne = Zni), where each ion consists of
an atomic nucleus and its most tightly bound, unrespon-
sive core electrons. We assume that the material can be
described as an isolated, homogeneous, two-temperature
system characterized at all times t by the temperatures
Te(t) and Ti(t) of the electronic (e) and ionic (i) subsys-
tems. Under the mild assumptions recalled below, the
temperatures can be shown to evolve according to

c0i
dTi

dt
= Gei (Te − Ti) , ce

dTe

dt
= −Gei (Te − Ti) (1)

where c0i = 3nikB/2 is the kinetic contribution to the
ionic heat capacity, ce is the specific heat capacity of
electrons at constant volume, and

Gei(Te, Ti) = 3nikB

〈

1

3Ni

Ni
∑

I=1

3
∑

x=1

γIx,Ix (R, Te)

〉

, (2)

Theoretical model Gei (1017 W/m3K)

Spitzer-Brysk 160 [15]

Fermi golden rule 5 [16, 17]

Coupled modes 0.33 [18] ; 0.1 [19]

Electron-phonon 2.6 [20] ; 5 [21]

TABLE I: Electron-ion coupling for solid density aluminum
at melting conditions.



2

is the electron-ion coupling, the focus of this work. It is
given in terms of the thermally averaged friction felt by
an ion as a result of its non-adiabatic interactions with
electrons defined as follows.
Equations (1)-(2) result from a first-principles deriva-

tion under the following three assumptions [26, 27]. (i)
The dynamics of each ion can be described by that
of the center RI of its narrowly localized wavepacket.
This is justified here, since the thermal de Broglie wave-
length Λ = h̄

√

2π/mikBTi (≃ 0.3/
√

ATi[eV ] Bohr) of
ions is generally much smaller than the spatial variations
of forces acting on them due to their large mass and
the relatively high temperatures. (ii) The typical ionic
velocities are small compared to the typical electronic
velocities. For instance, we assume Ti/mi ≪ TF/me

or Ti/mi ≪ Te/me in the degenerate Te/TF ≪ 1 or
non-degenerate limit Te/TF ≪ 1, respectively, where

TF = h̄2

2mekB
(3π2ne)

2

3 (≃ 1.69
(

ne[cm
−3]/1022

)
2

3 eV) is
the electronic Fermi temperature. This condition is gen-
erally respected due to the natural smallness of me/mi,
and is challenged only if Ti ≫ Te. (iii) Finally, we assume
that there is a quasi-continuum of electronic states, as is
the case for the metallic systems of interest here. Under
these conditions, the ion dynamics follows the stochastic,
Langevin-like equation

miR̈Ix = FBO
Ix +mi

∑

J,y

γIx,JyṘJy + ξIx

Here FBO
Ix is the adiabatic Born-Oppenheimer force felt

by ion I along the x-direction, which includes the in-
teractions with other ions and with the instantaneous
electrostatic potential of electrons. The other terms
describe the effect of non-adiabatic transitions between
closely spaced electronic states induced by the atomic
motions and electronic excitations. These terms, which
are not accounted for in current quantum molecular dy-
namics simulations, are responsible for the constant, non-
reversible, energy exchanges between electron and ions.
Like the buffeting of light liquid particles on a heavy
Brownian particle, the non-adiabatic effects produce fric-
tion forcesmi

∑

J,y γIx,JyṘJy , and δ-correlated Gaussian
random forces ξIx with correlators ≺ ξIx(t)ξJy(t

′) ≻=
2mekBTeγIx,Jyδ(t − t′). For a given ionic configuration
R = (R1, . . . ,RNi

), each friction coefficient is given by
the Kubo relation

γIx,Jy (R, Te) =
1

2mikBTe
Re

∫ ∞

0

dt
〈

F̂Ix(t)F̂Jy(0)
〉

e
(3)

where 〈. . . 〉e is the electronic thermal average at tem-

perature Te(t), and F̂Ix(t) = −eiĤet/h̄ ∂Ĥe(R)
∂RIx

e−iĤet/h̄ is

the electron-ion force operator at time t, where Ĥe (R) =
∑

i
p̂2

i

2me
+
∑

i,I vie(r̂i −RI)+
∑

i6=j
e2

4πǫ0
1

|r̂i−r̂j |
is the elec-

tronic Hamiltonian. Here, for simplicity of exposition,
the electron-ion interaction is described by a local pseu-
dopotential vie(r); in practice, the formalism allows to

deal with more elaborate descriptions [25] (e.g., the re-
sults shown below for noble and transition metals were
obtained using plane-augmented wave pseudopotentials).
The set of equations (1)-(3) is straightforwardly obtained
by applying the Langevin-like dynamics to the evolution

of the averaged ionic kinetic energy
〈

miṘ(t)2/2
〉

, where

〈. . . 〉 denotes the average both over the Gaussian noise
≺ · · · ≻ and over a thermal ionic distribution at temper-
ature Ti(t) [25, 26].
The expression (2) includes self-consistently the non-

ideal, quantum and thermal effects that coexist in the
warm dense matter regime. It reduces to well-known
models in limiting cases [17], including the traditional
Spitzer-Brysk formula in the hot plasma limit [15] and
the Fermi golden rule formula in the limit of weak
electron-ion interactions [16, 17]. Moreover, it applies
to hot solids with lattice temperature Ti much larger
than the Debye temperature ΘD (typically 0.01 − 0.04
eV [28]), where it extends the standard electron-phonon
couplingGe,ph [29] by including ionic motions beyond the
harmonic approximation.
By following techniques similar to those used for the

ab-initio calculation of electronic conductivities[23], we
use the ionic and electronic structures calculated with
standard quantum molecular dynamics simulations to
evaluate the Kubo relations (3) needed in Eq.(2). Briefly,
for each ionic configuration R, the electronic structure is
obtained from the solution of the Kohn-Sham equations
(

p̂2

2me
+VKS [ρe,R]

)

|α〉 = ǫα|α〉, where ǫα and |α〉 are the
single-particle Kohn-Sham energies and states, ρe(r) =
∑

α nα|〈r|α〉|
2 is the electron density, and nα = n(ǫα)

with n(ǫ) =
(

1 + e−(µ−ǫ)/kBTe
)−1

represents the Fermi-
Dirac occupation number of the state α. In terms of the
Kohn-Sham quantities, it can be shown that the coupling
coefficients (3)

γIx,Jy = −
π

mi

∑

α,β

′nα − nβ

ǫαβ
fαβ
Ix fβα

Jy δ (ǫαβ/h̄) , (4)

where the matrix elements fαβ
Ix =

〈

α
∣

∣f̂
(sc)
Ix

∣

∣β
〉

and f̂
(sc)
Ix

is the effective force along the x-direction between ion I
and a Kohn-Sham electron screened by other electrons.
Before showing results, we relate our approach to a

model that has served as a reference in recent works,

Ge−ph ≈ Ge−ph
0

∞
∫

−∞

[

g(ǫ)

g(ǫF )

]2(

−
∂ n(ǫ)

∂ǫ

)

dǫ , (5)

which is a simplification in the high temperature limit
[20, 30] of the general electron-phonon coupling fo-
mula [29]. Here g(ǫ) is the electron density of states

(DOS), which is computable with DFT, and Ge−ph
0 =

πh̄kBλ〈ω
2〉g(ǫF ), where ǫF = kBTF is the Fermi energy,

〈ω2〉 is the second moment of the phonon spectrum, and
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(c)

ρ=2.7 g/cm3 , Ti =0.1 eV (liquid)

ρ=2.7 g/cm3 , Ti =0.1 eV (FCC)
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FIG. 1: (color online) (a) DOS of Al with Ti = Te and Fermi-
Dirac distribution (dashed lines) for three electronic temper-
atures at Te = 0.1, 1, 2 eV. The violet line is the DOS of the
free-electron gas at 2.7 g.cm−3. Energy is measured with re-
spect to the chemical potential µ(ρ, Te). (b) Gei(Te, Ti) vs
Te for solid density Al at Ti = 0.1 eV compared with other
model predictions (see all table I). (c) Gei(Te, Ti) vs Te for Al
at various densities and ionic temperatures. The vertical bar
indicates the magnitude of the variation of Gei at melting.

λ is the electron-phonon mass enhancement factor. In
previous works, the prefactor Ge−ph

0 was either set to
match an experimental measurement at low electronic
temperature [20], or was calculated ab-initio [21, 32, 50].
Although derived for crystalline solids, the model (5) was
used in recent works on warm dense matter systems [6–

10]. Remarkably, an expression similar to Eq.(5) also
results from Eq.(4) if one assumes that the matrix ele-

ments fαβ
Ix depend weakly on the energies, fαβ

Ix ≈ fIx,
which yields

Gei ≈ Gei
0

∞
∫

−∞

[

g(ǫ)

g(ǫF )

]2(

−
∂ n(ǫ)

∂ǫ

)

dǫ , (6)

whereGei
0 = |fIx|

2g(ǫF )
2. The formulas (5) and (6) high-

lights the interplay between the DOS and the distribution
of electronic states, which, as shown by Lin et al. [20],
results in a strong dependence on the chemical compo-
sition and often on sharp variations with Te. Below we
compare our results to predictions based on (5) reported
by others and on Eq.(6) with Gei

0 set to reproduce the
value of Gei at the lowest Te considered. We find that
the simplified models (5) and (6) tend to overestimate
the dependence on Te or predicts variations at odds with
the full calculation.
Figures 1 and 2 (bottom panels) show results for

Gei(Te, Ti) for five representative materials and physi-
cal conditions, together with the predictions of previous
models and with experimental data. Below we highlight
some of the key findings. For each element, the upper
panels show the electron density of states g(ǫ) and the
Fermi-Dirac distribution function n(ǫ) at representative
conditions. Our results were obtained with the open-
source Quantum Espresso program [31]; the simulation
details are given in the Supplemental Material [32]. In all
cases, the material is prepared in the disordered, liquid-
like state, except for Aluminum for which we also show
calculations in a finite-temperature FCC configuration.
Aluminum. Figure 1b shows Gei(Ti, Te) versus Te at

solid density ρ = 2.7 g.cm−3 and Ti = 0.1 eV (slightly
above the melting temperature 0.08 eV), together with
other model predictions, including the Fermi golden rule
evaluated using the same pseudopotential vie of the ab-
initio calculations, and predicitons based on Eq.(6) and
the results of [20] and [21] based on Eq.(5) (see table I
for other predictions). Gei steadily increases between 4.6
to 5.6 1017 W/Km3 in the range 0.1 ≤ Te ≤ 2 eV, as
a result of the growing number of excited electrons that
participate to the electron-ion scattering processes. Our
results are in best agreement with the Fermi-golden rule,
which is expected given the free electron-like character
of Al at solid density (see full black and violet lines in
Fig. 1). They differ from the prediction based on Eq.(6),
which is similar to the result one obtains with the DOS
of the free-electron gas at solid density (see Fig. 1d in
[20]). Figure 1c shows Gei at other mass densities ρ and
ionic temperatures Ti. As ρ decreases, the DOS shown in
Fig. 1a progressively loses its free electron-like character.
We find that the Gei decreases with ρ at constant Te,
which is essentially an effect of the variation of the de-
creasing electron density (see ne prefactor in Eq.(2)), and
its variation with Te changes from an overall increasing
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FIG. 2: (color online) Top panels: same as Fig. 1a for Cu, Fe and Ni at the conditions indicated in the legends. Bottom panels:
G(Te, Ti) vs Te for (d) solid and liquid density Cu at Ti = 0.2 eV, (e) solid density Fe at Ti = 0.156 eV, and (f) solid density
Ni at Ti = 0.149 eV. In each case, the full lines with circles show the work’s results, the full lines without symbols are obtained
using Eq.(6) with Gei

0 set to reproduce the lowest Te value, the long dashed lines are the results based on Eq.(5) discussed in
[20]. In panel (d), the diamonds show the experimental results of [7], the bold green segment shows the measurement of [51]
for solid Cu. In the inset, the dashed lines show the model predictions based on Eq.(5) presented in [20, 50]. In panel (f), the
bold green segment shows the measurement of [52].

to a decreasing functions of Te. The figures also show
calculations obtained for FCC lattices at solid density
(open circles in Fig 1b and c). Our results are in good
agreement with the result of Waldecker et al. [21] based

on Eq.(5) with a DFT calculation of Ge−ph
0 . At melting,

the density is known to decrease from ∼ 2.7 to ∼ 2.35
g.cm−3 [49] and Gie decreases by about 25%, as indi-
cated by the orange vertical bar in Fig. 1c. This should
be contrasted with the large change in the electrical resis-
itivity at melting, which increases by a factor ∼ 2.1 [49],
in other words disorder has a higher effect on momentum
relaxation than on energy relaxation.

Copper. Warm dense copper has been the focus of sev-
eral recent studies [7, 9, 20, 50]. Figure 2d shows results
at solid and melt densities, 8.96 and 8.02 g.cm−3, and
Ti = 0.2 eV (melting temperature is 0.117 eV), together
with the measurements of [51] and [7]; the inset compares
our result at 8.96 g.cm−3 with Eq.(6) and with the re-
sults of [20] and [50] based on Eq(5). We find that Gei

increases with Te, with a faster variation above 0.5 eV
when the d electrons, which are responsible for the promi-
nent regions of high DOS in Fig. 2a, can be excited and
participate the electron-ion energy exchanges. However,
the variation is not as sharp and intense as that predicted
using Eq.(5) of [20] and [50]. Unlike Ref. [20], we don’t
find a sharp increase of Gei at small Te, which was as-

cribed to the thermal excitations of d-electrons. At solid
density, we find Gei ≃ 2 1017W/Km3, in fair agreement
with the old measurement 1017W/Km3 of Elsayed-Ali
et al. [51] for solid Cu. Our data lie slightly below the
recent measurements reported in [7].

Iron. Figure 2e shows the variation of Gei with Te ≤
2 eV for solid density Fe ρ = 7.87 g.cm−3 at melting
temperature Ti = 0.156 eV. We find that Gei does not
vary significantly over the temperature range considered,
unlike the predictions based on Eqs.(5) [20] and (6).

Nickel. Figure 2f shows the variation of Gei with Te ≤
2 eV for solid density Ni ρ = 8.91 g.cm−3 at melting
temperature Ti = 0.149 eV. We find that Gei increases
from 3.1 to 5.6 1017W/Km3 over the temperature range,
in contrast with the results based on Eq.(5) [20] and on
Eq.(6). Our result at lower Te are in good agreement with
the measurement reported by Wellershoff et al. [52].

In summary, we have presented much-needed first-
principles calculations of the electron-ion coupling fac-
tors of materials at the confluence of solids and plasmas
based on a general expression in terms of the friction coef-
ficients felt by ions due to the non-adiabatic electron-ion
interactions. The approach serves as a useful comparison
with the experimental measurements, permits an exten-
sion into conditions not covered by experiments, and pro-
vides insight into the underlying physics. We hope that
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this work will help assist and motivate future experiments
and, ultimately, will help advance our understanding of
the warm dense matter regime.

This work was supported by the US Department of
Energy through the Los Alamos National Laboratory
through the LDRD Grant No. 20170490ER and the
Center of Non-Linear Studies (CNLS). Los Alamos Na-
tional Laboratory is operated by Triad National Secu-
rity, LLC, for the National Nuclear Security Admin-
istration of U.S. Department of Energy (Contract No.
89233218CNA000001). The authors thank Dr. Dmitry
Mozyrsky for helpful conversations.

∗ Electronic address: jsimoni@lanl.gov,daligaul@lanl.
gov

[1] Frontiers and Challenges in Warm Dense Matter, Lec-
ture Notes in Computational Science and Engineering,
Vol. 96, edited by F. Graziani, M.P. Desjarlais, R. Red-
mer and S.B. Trickey (Springer, New York, 2014).

[2] Plasma: at the frontier of scientific discovery,
US Department of Energy Report of the Panel
on Frontiers of Plasma Science, 2017, Chapter 1,
available at https://science.energy.gov/fes/community-
resources/workshop-reports/ .

[3] A. Ng, P. Celliers, G. Xu and A. Forsman, Phys. Rev. E
52, 4299 (1995).
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