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Scattering of ultraintense short laser pulses off relativistic electrons allows one to generate a large
number of X- or gamma-ray photons with the expense of the spectral width—temporal pulsing of
the laser inevitable leads to considerable spectral broadening. In this Letter, we describe a simple
method to generate optimized laser pulses that compensate the nonlinear spectrum broadening, and
can be thought of as a superposition of two oppositely linearly chirped pulses delayed with respect
to each other. We develop a simple analytical model that allow us to predict the optimal parameters
of such a two-pulse—the delay, amount of chirp and relative phase—for generation of a narrowband
γ-ray spectrum. Our predictions are confirmed by numerical optimization and simulations including
3D effects.

The Inverse Compton Scattering (ICS) of laser light off
high-energy electron beams is a well-established source
of X- and gamma-rays for applications in medical, bio-
logical, nuclear, and material sciences [1–9]. One of the
main advantages of ICS photon sources is the possibility
to generate narrowband MeV photon beams, as opposed
to a broad continuum of Bremsstrahlung sources, for in-
stance. The radiation from 3rd and 4th generation light-
sources, on the other hand, typically has their highest
brightness at much lower photon energies [3], giving ICS
sources their unique scope [10–12].

With laser plasma accelerators (LPA), stable GeV-level
electron beams have been produced with very high peak
currents, small source size, intrinsic short duration (few
10s fs) and temporal correlation with the laser driver [13–
15], which is beneficial for using them in compact all-
optical ICS. In particular the latter properties allow for
the generation of femtosecond gamma-rays that can be
useful in time-resolved (pump-probe) studies. For design-
ing narrowband sources, it is important to understand in
detail the different contributions to the scattered radia-
tion bandwidth [6, 9, 16, 17].

For an intense source the number of electron-photon
scattering events needs to be maximized [6], which can
be achieved in the most straightforward way by increas-
ing the intensity of the scattering laser, I[W/cm2] =
1.37 × 1018 a2

0/λ
2[µm], where a0 = eA0/m with e and

m electron absolute charge and mass respectively, and
A0 the peak amplitude of the laser pulse vector poten-
tial in Gaussian CGS units (with ~ = c = 1) and λ
the laser wavelength. However, this leads to an unfor-
tunate consequence when the laser pulse normalized am-
plitude reaches a0 ∼ 1: ponderomotive spectral broaden-
ing of the scattered radiation on the order of ∆ω′/ω′ ∼
a2

0/
(
1 + a2

0

)
[6, 16, 18–21].

The ponderomotive broadening is caused by the v×B
force, which effectively slows down the forward motion of

electrons near the peak of the laser pulse where the in-
tensity is high [19, 20, 22]. Hence, the photons scattered
near the peak of the laser pulse are red-shifted compared
to the photons scattered near the wings of the pulse and
the spectrum of gamma rays becomes broad. Broadband
gamma-ray spectra from ICS using laser-accelerated elec-
trons and scattering pulses with a0 > 1 have been ob-
served experimentally [23–26].

To overcome this fundamental limit it was proposed
to use temporal laser pulse chirping to compensate the
nonlinear spectrum broadening [27–31]. By perform-
ing a stationary phase analysis of the non-linear Comp-
ton S-matrix elements [29] or the corresponding classical
Liénard-Wiechert amplitudes [28, 30] one finds that the
fundamental frequency of on-axis ICS photons behaves
as (off-axis emission and higher harmonics can be easily
accounted for [29]).

ω′(ϕ) =
4γ2ωL

1 + a(ϕ)2 + 2γωL

m

, (1)

where the last term in the denominator is the quantum
recoil and missing in a classical approach. Here a(ϕ) is
the envelope of the normalized laser pulse vector poten-
tial, with peak value a0, ωL as the laser frequency, and
ϕ = t − z. If the instantaneous laser frequency follows
the laser pulse envelope according to

ωL(ϕ) = ω0[1 + a(ϕ)2] , (2)

with a reference frequency ω0, then the non-linear broad-
ening is perfectly compensated, ω′ = const. ≈ 4γ2ω0 in
the recoil free limit. This is the basic idea behind the
promising approach for ponderomotive broadening com-
pensation in ICS using chirped laser pulses. However,
realizing such a highly nonlinear temporal chirp experi-
mentally seems challenging because the laser frequency
needs to precisely sweep up and down again within a few
femtoseconds [28, 31].
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In this Letter, we propose a simple method to gener-
ate optimized laser pulses for the compensation of the
nonlinear broadening of ICS photon sources and, thus,
enhance photon yield in a narrow frequency band. We
propose to synthesize an optimized laser spectrum us-
ing standard optical dispersive elements. By working in
frequency space, both the temporal pulse shape and the
local laser frequency are adjusted simultaneously to ful-
fill the compensation condition, Eq. (2), where the fre-
quency first rises until the peak of the pulse intensity
and then drops again. We develop an analytic model to
predict the optimal dispersion needed for generating a
narrowband ICS spectrum, and we compare with numer-
ical optimization of the peak spectral brightness of the
compensated nonlinear Compton source. We performed
simulations for realistic electron beams, and taking into
account laser focusing effects.

In order to produce the optimized laser spectra we pro-
pose a two-pulse scheme: An initially unchirped broad-
band laser pulse with the spectral amplitude ãin(ω) is
split into two identical pulses, e.g. using a beam splitter.
Each of these pulses is sent to the arms of an interfer-
ometer where a spectral phase Φ̃(ω) is applied to one
of the pulses and the conjugate spectral phase −Φ̃(ω) is
imposed onto the other one, using, for example, acousto-
optical dispersive filters, diffraction gratings, or spatial
light modulators. The two pulses are coherently recom-
bined causing a spectral modulation. In the time-domain
this translates to the coherent superposition of two lin-
early and oppositely chirped laser pulses which are de-
layed with respect to each other, see Fig. 1(a).

We model the initial laser pulse by a Gaussian spectral
amplitude,

ãin(ω) =
a0

∆ωL

√
2π e

− (ω−ω0)2

2∆ω2
L , (3)

with bandwidth ∆ωL. The inverse Fourier transform of
this spectrum gives complex amplitude,

ain(ϕ) = a0 e
−ϕ2∆ω2

L
2 e−iω0ϕ = a(ϕ) e−iω0ϕ , (4)

which determines the real vector potential of a circularly
polarized laser pulse propagating in the z direction via
a⊥ = <[a⊥ε] with ε = ex + iey, and with ϕ = t+ z.

After the spectral phases ±Φ̃(ω) are applied to the
two split pulses and the pulses have been recombined,
the spectrum of the recombined two-pulse is modulated
as

ã(ω) = ãin(ω) cos Φ̃(ω) . (5)

The spectral phase is parametrized as Φ̃(ω) =∑2
k=0Bk (ω − ω0)

k
/(k!∆ωkL). When including higher

order terms we didn’t find great improvements, so we
keep here only terms up to quadratic order. The di-
mensionless parameters B0, B1 and B2 determine the

(a)

−150 −100 −50 0 50 100 150
ω0ϕ

0.8

0.9

1.0

1.1

1.2

ω
/ω

0

(b)

1.0

1.1

1.2

1.3

1.4

1
+
a

2
(ϕ

)

FIG. 1. Schematic sketch of the two-pulse model for
generating optimized laser pulses for narrowband nonlinear
ICS (a). Wigner function of the recombined two-pulse for
B = {1.4, 4.5,−4.6} (b). The black curve is the analytical
expression for the instantaneous frequency ωL(ϕ), the green
dashed curve is the analytical instantaneous 1 + a2(ϕ).

relative phase, relative delay and amount of linear chirp,
respectively, and they are collated into a vector B =
{B0, B1, B2} for short-hand notation.

The temporal structure of the recombined pulse can
be found analytically by the inverse Fourier transform
of Eq. (5), yielding the complex amplitude a⊥(ϕ) =
a(ϕ)e−iΦ(ϕ), where a(ϕ) is the time-dependent envelope,
and Φ(ϕ) is the temporal phase of the two-pulse. The
instantaneous frequency in the recombined pulse is given
by ωL(ϕ) = dΦ(ϕ)/dϕ, which is a slowly varying func-
tion [32]. Explicit analytical expressions are lengthy,
and given in the Supplementary Material. In the limit
B = 0, we re-obtain the Fourier-limited Gaussian pulse
with the amplitude a0 and temporal r.m.s. duration
∆ϕ = 1/∆ωL, Eq. (4). For nonzero values of B the re-
sulting laser pulse will be stretched, with a non-Gaussian
envelope in general, and with a lower effective peak am-
plitude than the Fourier limited pulse. It can be thought
of as a superposition of two interfering linearly chirped
Gaussian pulses with a delay of δ = 2B1/∆ωL, each with
a full-width at 1/e duration ϕp = 2

√
1 +B2

2/∆ωL, see
Fig. 1 (a). The Wigner function characterizing such a re-
combined two-pulse is shown in Fig. 1(b), together with
the instantaneous frequency ωL(ϕ) (dashed black curve)
and instantaneous 1 + a2(ϕ) (dashed green curve).

The goal is to optimize B such that the compensation
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condition (2) is fulfilled as good as possible, see green
and black curves in Fig. 1(b). The optimal values of B
depend on a0 and the available laser bandwidth. We
mention here that the stretching of the pulse alone leads
to some improvement of the spectral brightness already
since the effective a0 is lowered. However, as we shall
see later when comparing with an unchirped matched
Gaussian pulse, the optimal pulse chirping improves the
spectral brightness much further.

The on-axis ICS gamma photon spectral density of an
optimized laser pulse scattered from a counterpropagat-
ing electron with γ � 1, assuming quantum recoil and
radiation reaction can be still neglected [33], can then be
written as [34]

d2N

dydΩ

∣∣∣∣
θ=π

= N

∣∣∣∣∣∣
+∞∫
−∞

dϕ a⊥(ϕ) eiω0y(ϕ+
∫ ϕ
−∞ a(ϕ′)2dϕ′)

∣∣∣∣∣∣
2

,

(6)

with y = ω′/(4γ2ω0) as the normalized frequency, θ is
the polar angle, and normalization N = e2yγ2ω2

0/π
2.

The on-axis scattered photon spectrum depends on the
values of B, as illustrated in Fig. 2(a), where the case
of a0 = 2 and ∆ωL/ω0 = 0.1 is presented. The black
dashed curve shows the spectrum for the unchirped laser
pulse with B = 0, while the blue solid line shows the
spectrum for the optimized values B = {1.4, 4.5,−4.6}
with rms bandwidth ∆y = 0.0178. The corresponding
normalized laser pulse vector potential shapes are shown
in Fig. 2(b) with the same color code.

For the chirped pulse (blue solid line), both the en-
velope and the waveform are presented, and one can
measure that the frequency in the wings of the laser
pulse is lower than in the center, where the intensity is
higher. For comparison, we also employ the notion of the
matched Gaussian pulse—a pulse that has the same am-
plitude as the chirped pulse (aeff = 0.58), and the same
energy content, but the frequency is constant and is equal
to ω0 [34]. The envelope of the matched Gaussian pulse
and the corresponding ICS photon spectrum are shown
by red curves in Fig. 2(b) and (a), respectively. One can
see that, by choosing the optimal chirp parameters, the
peak of the scattered photon spectrum is in this case 4
times higher and the bandwidth is significantly narrower
than the case of the matched unchirped Gaussian pulse.

We now develop a model to predict the optimal chirp
parameters B for generation of a narrowband ICS spec-
trum. As discussed above, the recombined optimized
laser pulse can be seen as the coherent superposition of
two delayed oppositely linearly chirped Gaussian pulses.
If the delay is too large this will result in two separate
pulses and the optimization condition (2) cannot be ful-
filled.

First, for optimal pulse overlap the delay between the
two pulses δ should roughly equal the duration of each
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FIG. 2. (a) On-axis scattered photon spectra for a0 = 2,
∆ωL/ω0 = 0.1 for different values of parameters B. The
spectrum for the unchirped case with B = 0 is drawn with
dashed black line. Note, that for visibility, the spectrum has
been multiplied by 5. The case of the optimal set of param-
eters B = {1.4, 4.5,−4.6} is shown with a blue curve. The
red cure demonstrates the on-axis scattered photon spectrum
for the matched unchirped Gaussian pulse (described in the
text). (b) Corresponding amplitudes a(ϕ) of the normalized
laser vector potential.

of the pulses ϕp, hence, B1 = χ
√

1 +B2
2 , with χ = O(1)

as a factor of proportionality [35]. Second, the interfer-
ence of two pulses should be mostly constructive and the
two-pulse should contain the maximum possible amount
of photons, which determines B0(B1, B2), see Eq. (8) be-
low, by requiring that the argument of the cosine in the
analytical expression for a2(ϕ) [34] is 2πn with integer n.

Finally, but most importantly, we match the linear
chirp given by parameter B2 to the change of the en-
velope. For doing this, one only needs two values of
instantaneous frequency ωL(φ) [34]: one at the center
of each Gaussian pulses, ω1 = ω0, and the other in the
middle of the two-pulse, ω2 ' ω0 − χB2∆ωL/

√
1 +B2

2 .
This is outlined in Fig. 1 (a), where instantaneous fre-
quency is schematically drawn with the dashed red line,
and two points used for slope matching are shown with
red dots. The compensation condition for narrowband
emission now turns into

ω1

1 + a2(−δ/2)
=

ω2

1 + a2(0)
, (7)

which provides an equation for B2. In the limit |B2| �
1, after straightforward algebraic calculations, we find
expressions for all three parameters as functions of laser
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FIG. 3. (a) Optimal chirp parameters B0 (red diamonds), B1

(green squares) and B2 (blue circles) that lead to the narrow-
est on-axis scattered photon spectrum and obtained from sim-
ulations, as functions of a0 for ∆ωL/ω0 = 0.1. Shaded areas
of corresponding colors are the model predictions, Eqns. (8).
(b) Relative rms bandwidth of the on-axis photon spectrum
for the optimally chirped pulse. (c) Peak spectral brightness
(psb) of the on-axis scattered photons as a function of a0

for the optimally chirped pulse (purple diamonds) and com-
pared to matched Gaussian (orange squares) and unoptimized
cases (cyan circles). The black dotted curve represents a fit
f(a0) = 637 a2.8

0 of the optimized case, the shaded are cor-
responds to peak spectral brightness predicted using model
parameters just like in (a).

bandwidth and a0,

B2 = − a
2
0

4χ

ω0

∆ωL

(
4e−χ

2 − 1− χ∆ωL
ω0

)
,

B1 = χ
√

1 +B2
2 ,

B0 =
χ2B2

2
− 1

4
arctanB2 + nπ ,

(8)

that produce laser pulses which compensate the nonlinear
spectrum broadening and significantly reduce the band-
width of backscattered X-rays.

Numerical optimization was carried out in order to find
optimal sets of parameters B that yields the narrowest
rms ICS spectrum for various a0 and laser bandwidth

∆ωL/ω0 = 0.1. The results are shown in Fig. 3, and
compared to the analytical model predictions, Eqns. (8).
The symbols in Fig. 3 (a) refer to the numerically opti-
mized parameters B, while the shaded areas correspond
to the model predictions with varying χ = 0.95 . . . 1 with
the dotted curves at χ = 1. Note there are some dis-
crepancies between the numerical optimization and the
analytical model for small a0 because we assumedB2 � 1
in order to solve the equations to arrive at (8).

Fig. 3 (b) shows a relative rms bandwidth of the ICS
photons, which is well below 4% throughout. It is evi-
dent there is an optimal range of a0 for the given laser
bandwidth around a0 = 1.5 where the bandwidth of the
ICS photons is smallest. This optimal region shifts to
higher a0 for larger laser bandwidth.

For large values of a0 > 3.5, the quality of the pho-
ton spectrum somewhat decreases. We attribute this
to the fact, that for high values of a0, the amount of
chirp stretches the pulses very long and the delay be-
tween pulses leads to the beating of two Gaussians such
that the envelope of the two-pulse is not smooth anymore.
According to our model, for the optimally chirped pulses
the effective aeff ≈ 1.76×

√
∆ωL/ω0 for |B2| � 1, inde-

pendent of the initial a0. We have performed studies for
different values of ∆ωL/ω0 and found similar optimiza-
tion but extending to larger a0 for larger bandwidth.

Fig. 3(c) shows the on-axis peak spectral brightness
of the ICS photons as a function of a0 for the numeri-
cally optimized chirped pulses (purple diamonds). The
purple shaded area corresponds to the optimized model
parameters Eqns. (8) with the same variation as in Fig. 3
(a), showing a very good agreement and robustness. The
case of a0 = 2 is the same as shown in Fig. 2. Our
simulations indicate that the peak spectral brightness
for optimally chirped pulses grows ∝ a2.8

0 (black dotted
curve). For comparison, we also show the completely
unchirped pulses (green circles) and matched gaussians
(orange squares). The peak spectral brightness for opti-
mally chirped pulse exceeds the matched Gaussian pulse
by a factor of 4 . . . 5.

We have presented a simple two-pulse scheme for the
compensation of non-linear broadening effects in inverse
Compton scattering gamma ray sources based on the
spectral synthesis of optimized chirped laser pulses. We
developed a model to predict the required spectral phase
in dependence on the laser intensity and bandwidth. To
verify the robustness of our scheme with regard to 3D
effects we numerically simulated electron trajectories by
solving the Lorentz force equation, and calculating the
radiation emission using Liénard-Wiechert potentials in
the far field [34, 36] for a realistic scenario (see Figure 4):
We simulated the collision of a 270 MeV LPA electron
beam with 2.2 % energy spread and 0.2 mm mrad nor-
malized emittance, beam size 1.8 µm and duration 10 fs
[37–39], with a Gaussian laser pulse of waist w0 = 20 µm
within the paraxial approximation [32, 40], a0 = 2,
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FIG. 4. Simulated spectral-angular Compton photon distri-
bution for a 50 pC realistic electron beam interacting with a
focused laser pulse. The green curve is an on-axis lineout.

ω0 = 1.55 eV, and the temporal chirping parameters
B = (−1.7, 4.4,−4.4) taken from the numerical optimiza-
tion in Fig. 3.

Our model predictions can serve as initial conditions
for active feedback optimization of inverse Compton
sources, e.g. using machine learning techniques. The op-
timal control of the temporal laser pulse structure has
been successfully demonstrated already, e.g. for the op-
timization of laser accelerated electron beams and x-ray
production [41, 42]. The optimal chirping of the scat-
tering pulse could be included into an overall feedback
loop. Depending on the desired bandwidth of the ICS
the other contributions to the total bandwidth, such as
the electron energy spread and emittance, could be opti-
mized alongside the temporal spectral shape of the scat-
tering laser pulse by choosing proper goal functions for
optimization.
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