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We present a method for producing three-dimensional Bose-Einstein condensates using only laser
cooling. The phase transition to condensation is crossed with 2.5×104 87Rb atoms at a temperature
of Tc = 0.6 µK after 1.4 s of cooling. Atoms are trapped in a crossed optical dipole trap and cooled
using Raman cooling with far-off-resonant optical pumping light to reduce atom loss and heating.
The achieved temperatures are well below the effective recoil temperature. We find that during the
final cooling stage at atomic densities above 1014 cm−3, careful tuning of trap depth and optical-
pumping rate is necessary to evade heating and loss mechanisms. The method may enable the fast
production of quantum degenerate gases in a variety of systems including fermions.

Quantum degenerate gases provide a flexible platform
with applications ranging from quantum simulations of
many-body interacting systems [1] to precision measure-
ments [2]. The standard technique for achieving quan-
tum degeneracy is laser cooling followed by evaporative
cooling [3] in magnetic [4–6] or optical traps [7]. Evap-
oration is a powerful tool, but its performance depends
strongly on atomic collisional properties and it requires
removal of most of the initially trapped atoms. Laser
cooling gases to degeneracy could alleviate those issues,
but it has proven difficult to implement.

The elusiveness of laser cooling to Bose-Einstein con-
densation (BEC) [4, 5] for more than two decades [8–11]
can be understood as follows: optical cooling requires
spontaneous photon scattering that moves entropy from
the atomic system into the light field. Such scattering
sets a natural atomic temperature scale Tr associated
with the recoil momentum from a single photon of wave-
length 2πλ and an associated atomic thermal de Broglie
wavelength λdB =

√
2π~2/(mkBTr) ∼ λ. Here ~ is the

reduced Planck constant, m the atomic mass, and kB

the Boltzmann constant. BEC must then be achieved at
relatively high critical atomic density nc ∼ λ−3

dB ∼ λ−3,
where inelastic collisions result in heating and trap loss.
In particular, light-induced collisional loss becomes se-
vere when n & λ−3 [12, 13].

For strontium atoms, where cooling on a spectrally
narrow transition is available, a strongly-inhomogeneous
trapping potential has been used to cool a lower-density
thermal bath while decoupling the emerging conden-
sate from the cooling light [14]. Very recently, based
on similar principles to the ones presented here, an ar-
ray of small, nearly one-dimensional condensates has
been prepared using degenerate Raman sideband cool-
ing [11, 15, 16] of 87Rb atoms in a two-dimensional opti-
cal lattice [17].

In this Letter, we demonstrate Raman cooling [9, 18–
21] of an ensemble of 87Rb atoms into the quantum de-
generate regime, without evaporative cooling. Starting
with up to 1×105 atoms in an optical dipole trap, the
transition to BEC is reached with up to 2.5×104 atoms

within a cooling time of ∼1 s. As discussed in detail be-
low, the essential components of our technique are (i) the
use of carefully far-detuned cooling light to reduce atom
loss and heating at high atomic densities [12, 22, 23], (ii)
a reduced optical pumping rate during the final stage
to avoid heating by photon reabsorption (festina lente
regime [24–26]), (iii) a final cooling of atoms in the
high-energy wings of the thermal velocity distribution to
achieve sub-recoil cooling, and (iv) careful control of the
final trap depth to reduce heating induced by inelastic
three-body collisions.

Raman cooling of the optically trapped atoms is a two-
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FIG. 1. (a) Geometry of the experimental setup with 795nm
optical pumping and Raman coupling beams, and 1064nm
trapping beams. (b) Molecular potentials. Light-assisted col-
lisions are suppressed if the detuning from atomic resonance ∆
is chosen to be far from photo-association resonances (solid
red horizontal lines). (c) Partial atomic level scheme. The
Raman transition is resonant for atoms with a two-photon
Doppler shift δR. (d) Velocity distribution of the atoms along
the two-photon momentum ~(∆k). A Raman transition re-
duces the velocity of atoms in the velocity class δR/|∆k| by
~(∆k)/m.
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step process where kinetic energy is first removed via a
stimulated two-photon Raman transition that simulta-
neously changes the internal atomic state. Subsequently,
entropy is removed in an optical pumping process that
restores the original atomic state via the spontaneous
scattering of a photon [see Fig. 1(c)-(d)]. The optical
pumping into the state |5S1/2;F=2,mF =− 2〉 along the
z-axis is performed with σ−-polarized light. We reduce
light-induced loss by using optical pumping light with
large negative detuning ∆/(2π) = −4.33 GHz from the
|5S1/2;F=2〉 to |5P1/2;F ′=2〉 transition of the D1-line,
choosing a detuning far from molecular resonances [see
Fig. 1(b-c) and [27]]. The far-detuned σ−-polarized beam
and a π-polarized beam of similar detuning which prop-
agates in the x− y plane [see Fig. 1(a)], drive the stimu-
lated Raman transition to the state |5S1/2; 2,−1〉, simul-
taneously changing the atomic momentum by the two-
photon recoil ~(∆k) [27]. To cool all three directions, we
choose ~(∆k) to have a non-zero projection along any
trap eigenaxis.

Cooling is performed in several stages to allow opti-
mization of the cooling as the atomic temperature and
density change. Within each stage, the trapping beam
powers, optical pumping rate Γsc, Raman coupling Rabi
frequency ΩR, and Raman resonance detuning δR are
held constant. The first two cooling stages, S1 and S2, are
performed in a single-beam optical dipole trap (sODT),
after which the atoms are transferred to a crossed optical
dipole trap (xODT), where we perform three more cool-
ing stages [X1 to X3, see Fig. 2(a)]. During each stage, we
characterize the cooling performance using time-of-flight
absorption imaging, extracting the atom number N and
temperature T . (For the final cooling stage close to the
BEC threshhold, we exclude the central part of the time-
of-flight image from the temperature fit.) We quantify
the cooling performance by the classical phase space den-
sity PSDc = N (~ω̄/(kBT ))

3
, where ω̄ = (ωxωyωz)1/3 is

the geometric mean of the three trapping frequencies. Far
from degeneracy, i.e. for a classical gas, PSDc is equal to
the true PSD at the center of the cloud, PSD = n(0)λ3

dB.
The parameters of each stage are optimized to yield the
highest PSDc at the end of the stage [27].

We load 1×105 atoms from a magneto-optical trap into
the sODT propagating along the y-direction with a 10 µm
waist [Fig. 1(a)]. After cooling in stage S1 (see Fig. 2),
the trap power and vibration frequencies are reduced,
thereby lowering the density and therefore the loss in
stage S2. For all stages, we verify that the trap remains
sufficiently deep to keep evaporative cooling negligible.

During stages S1 and S2 we perform fast cooling
over 500 ms from 30 µK down to 1.5 µK, and up
to PSDc just below unity. The larger loss rate dur-
ing S1 relative to the other stages [see Fig. 2(c)] oc-
curs because the Raman cooling cycle, and hence light-
induced collision rate, is faster. The initial cool-
ing at high temperatures T≈ 30 µK and densities

FIG. 2. (a) Schematic of the trapping potential during the
cooling sequence, along with the values of the trapping fre-
quencies for each cooling stage. (b) Atomic temperature T
as a function of cooling time t. Discrete jumps are caused by
changes of the trapping potential between the cooling stages.
Inset: Temperature on a linear scale. (c) Atom number (open
symbols) and condensate fraction N0/N (solid circles) during
the cooling sequence. (d) Classical phase-space density PSDc

(see main text) as a function of cooling time t. The grey
shaded area denotes the quantum degenerate region. Subfig-
ures (b-d) are all plotted along the same time axis.

n < 7×1013 cm−3 is quite efficient, with a logarithmic
slope of γ = −d(ln PSDc)/d(lnN) = 7.2 [see Fig. 3(a)].

After stage S2, the ensemble is sufficiently cold so that
it can be efficiently transferred in the xODT by ramping
up the second trapping beam (18 µm waist, propagating
along x), and applying a short initial cooling (stage X1).
In a similar fashion to the S1-S2 sequence, we reduce the
confinement of the xODT and cool further during X2,
after which the ensemble is at the threshold to condensa-
tion. No condensate appears in X2 despite PSDc reach-
ing the ideal-gas value of 1.2 [28], which we attribute to
a combination of the finite size effect [29], the interac-
tion shift [30] and small calibration errors. After fur-
ther reduction of the xODT, we are able to cross the
BEC transition during X3, as shown by the appearance
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FIG. 3. (a) Classical phase-space density PSDc as a function
of remaining atom number N . The cooling is very efficient
until PSDc∼1 is reached. The black symbols denote the per-
formance of the same sequence with the initial atom number
reduced by a factor 5. The final atom number is only reduced
by a factor 2, indicating a density limit in the cooling. The
solid (dashed) black line indicates the S1-S2 (S1-X3) path
with an efficiency γ = 7.2 (γ = 11) for each case. (b) Line
optical density (dots) of the cloud in time-of-flight along the
y′-direction (slightly rotated from the y-direction in the x− y
plane, see SM [27]). The data is taken after 1.6 s of cooling
and fitted with a g5/2 Bose distribution with a Thomas-Fermi
distribution superimposed (orange line). The shaded area in-
dicates the condensed fraction. (c) False color image of the
same cloud (before integration along the vertical direction),
showing the anisotropic expansion of the condensed fraction
in the center.

of a condensed fraction in the velocity distribution [see
Fig. 3(b)]. The onset of BEC is further confirmed by the
anisotropic expansion of the central part of the cloud due
to trap confinement anisotropy [see Fig. 3(c)].

In order to achieve BEC, the trap depth during X3
must not be too large. For trap depths much larger than
∼kB × 20 µK we observe a strong, density-dependent
anomalous heating when the Raman cooling is turned
off. (Heating rates of up to 10 µK/s are observed at
n ≈ 2×1014 cm−3 with a trap depth of kB × 250 µK.)
We surmise that at high atomic densities n & 1014 cm−3,
recombination products of inelastic three-body collisions
undergo grazing collisions with trapped atoms, deposit-
ing heat in the cloud [27]. This limit on the maximum
trap depth is akin to the necessity to maintain, even in
the absence of evaporative cooling, a sufficiently low trap
depth by applying a so-called “RF-shield” in magnetic
traps which allows highly energetic nonthermal atoms to
escape [31, 32].

The BEC transition is crossed with N≈ 2.5×104 atoms
at a critical temperature of Tc= 0.61(4) µK. We are able

to reach condensate fractions N0/N up to 7%. We also
verify that if the Raman cooling is turned off during stage
X3, the PSD does not increase, and a condensate does
not appear. Furthermore the condensate can be main-
tained for ∼1 s after creation if the cooling is left on, but
if the cooling is turned off, the condensate decays within
∼100 ms. This confirms that evaporation is insufficient
to create or maintain a condensate in this trap configura-
tion, and that the laser cooling is responsible for inducing
the phase transition.

For most laser cooling methods, the requisite sponta-
neous photon scattering sets a recoil temperature limit.
Nonetheless, we achieve sub-recoil temperatures by ad-
dressing atoms in the high-energy wings of the thermal
distribution. The optical pumping |2,−1〉→|2,−2〉 re-
quires on average the spontaneous scattering of three
photons, and therefore imparts 6Er of energy, where
Er = ~2/(2mλ2) = h×3.6 kHz is the recoil energy of a
795 nm photon. As a result, only atoms with K∆k/h &
29 kHz of kinetic energy along the ∆k-direction can be
cooled at all [27]. This sets an effective recoil temper-
ature T eff

r = 2.8 µK. We achieve cooling below this ef-
fective recoil limit down to 0.5 µK, i.e. a mean kinetic
energy 〈K∆k〉/h = 5.2 kHz, by detuning the Raman cou-
pling so that atoms with more than the average kinetic
energy are addressed by the cooling light [27]. However,
this slows down the cooling for temperatures below T eff

r

(stage S2 onwards), while inelastic collisions add an in-
creased heat load at high densities. In X3 when we cross
Tc, we find that under optimized cooling the Raman tran-
sition removes 15 kHz of kinetic energy, 30% less than the
expected 6Er of heating (see SM [27]). This could indi-
cate that the cooling is aided by bosonic stimulation into
the condensate during the photon scattering process, in
a similar fashion to Ref. [33].

The improved performance of our scheme compared to
previous Raman cooling results [9, 20] is primarily due
to the flexibility to perform optical pumping to a dark
state at large detuning from atomic resonances by op-
erating on the D1-line. To identify suitable detunings,
we separately characterized light-induced losses over a
16 GHz frequency range to the red of the bare atomic
transition, as shown in Fig. 4(a), and further detailed in
the SM [27]. Fig. 4(b) displays the final atom number
and condensate fraction of the optimized sequence as a
function of detuning around the value of −4.33 GHz cho-
sen for the experiment. We find that a suitable detuning
has to be maintained within ±50 MHz to ensure good
cooling performance.

Another parameter that needs to be optimized is the
photon scattering rate Γsc for optical pumping into the
|2,−2〉 dark state. Despite the large detuning, the re-
absorption of spontaneously scattered optical pumping
photons by other atoms is a resonant two-photon pro-
cess that can lead to excess heating. However, it was
shown theoretically [24, 25], and confirmed experimen-
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FIG. 4. (a) Photoassociation loss spectrum. Survival probability of trapped atoms as a function of the detuning ∆ of the
optical pumping beam, when scattering ∼100 photons. In substantial portions of the spectrum, the atomic loss is large, due
to photoassociation resonances, whereas the peaks correspond to gaps in the photoassociation spectrum away from resonances.
The green arrow indicates the detuning used for the data in Fig. 2 and 3. (b) Performance of the full cooling sequence as a
function of optical pumping detuning ∆ near a locally optimal detuning. A condensate fraction N0/N is visible only when
the losses are limited. To keep the Raman resonance detuning δR constant between data points, the magnetic field is adjusted
to compensate the change in light shift associated with varying ∆. (c) Temperature and condensate fraction as a function of
the scattering rate Γsc in the final cooling stage. Here, the intensity of the π-poarized beam is adjusted to keep the Raman
coupling strength constant between data points, and δR is adjusted to optimize the cooling performance for each data point.

tally [34], that the excess heating can be suppressed at
sufficiently low scattering rate Γsc, such that the con-
finement and two-photon Doppler broadening reduce the
reabsorption probability. This limit is known as the fes-
tina lente regime. The degradation of the performance
at larger Γsc in Fig. 4(c) is consistent with increased
rescattering, as the calculated reabsorption probability
approaches unity [27]. A too small value of Γsc, on the
other hand, leads to higher temperatures as parasitic
heating mechanisms cannot be compensated when the
cooling is too slow.

While 87Rb has relatively favorable collision properties
(low two-body inelastic loss rate coefficient, and mod-
erate three-body loss rate coefficient in the upper hy-
perfine manifold), these properties are not unique, and
other atomic species may also be suitable for direct laser
cooling to BEC. Since the cooling is not deeply subre-
coil, relatively high densities n ∼ λ−3 are required for
reaching BEC. Thanks to the fast cooling, the effect
of inelastic loss is small enough if a cloud is stable at
these densities (typ. lifetime & 1 s at 1014 cm−3). In-
elastic processes can be further reduced in an effectively
one-dimensional geometry [17], where fermionization of
the bosonic wavefunction reduces collisional processes.
The demonstrated technique could also be directly ap-
plied to fermionic atoms [6], as well as to laser cooled

molecules [35, 36].

In conclusion, we have realized the decades-old goal
of BEC purely by laser cooling by creating a single,
moderately sized Bose-Einstein condensate in a standard
crossed optical dipole trap. Notably, the method is con-
sistent with the general theoretical recipe put forward
by Santos et al. [26]. Further work is needed to explore
the limits of this new technique in terms of speed, con-
densate size and final temperature. [We observe that the
performance is still density-limited, see Fig. 3(a), and
verified that when allowing for moderate final evapora-
tion, nearly pure condensates can be created within a
cooling time of 1 s.] It may also be interesting to in-
vestigate if this technique can be used to experimentally
realize an atom laser, where the condensate is created
by bosonic stimulation into the atomic final state during
the spontaneous photon scattering [37, 38], rather than
through thermalizing elastic collisions.
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