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As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics.
Here we investigate, for the first time, three-qubit randomized benchmarking (RB) on a quantum
device consisting of three fixed-frequency transmon qubits with pairwise microwave-activated inter-
actions (cross-resonance). We measure a three-qubit error per Clifford of 0.106 for all-to-all gate
connectivity and 0.207 for linear gate connectivity. Furthermore, by introducing mixed dimension-
ality simultaneous RB — simultaneous one- and two-qubit RB — we show that the three-qubit
errors can be predicted from the one- and two-qubit errors. However, by introducing certain co-
herent errors to the gates we can increase the three-qubit error to 0.302, an increase that is not
predicted by a proportionate increase in the one- and two-qubit errors from simultaneous RB. This
demonstrates the importance of multiqubit metrics, such as three-qubit RB, on evaluating overall
device performance.

As quantum circuits increase in size, the problem
of characterization becomes more acute. Exponential
growth of the state space with the number of qubits
means that tomographic methods for reconstructing the
system will require exponential resources. Indeed, the
number of required measurements for quantum process
tomography scales as 16n [1] where n is the number of
qubits. To avoid scaling issues, methods have focused on
characterizing the primitive set of gates used to construct
the universal gateset. At minimum, for n qubits, this
set contains several one-qubit gates for all n qubits and
n−1 two-qubit gates [2]. But how good is the assumption
that multiqubit algorithmic fidelities will be predicted by
these primitive gate fidelities? There are strong indica-
tions that this assumption fails due to crosstalk and ad-
dressability errors. For example, surface code algorithms
require constructing local five-qubit gates via sequential
application of two-qubit CNOT gates in parallel across
a multiqubit circuit. Surface codes are predicted to have
a high threshold for correcting errors, but they are typi-
cally simulated with correlated noise only between qubits
for which there is a direct gate [3]. In a recent five-qubit
test of a logical qubit, the fidelity was greatly improved
by compensating for ZZ terms to spectator (i.e., non-
participating neighboring) qubits during the two-qubit
gate [4]. In addition, several studies have observed that
algorithmic and primitive gate fidelity do not always
agree. For example when four algorithms were run on
two different five-qubit processors there was no definitive
agreement from primitive to algorithmic fidelity [5]. In a
five-qubit device with measured two-qubit gate fidelities
of 0.99, the state fidelity of a five-qubit GHZ state was
0.82 after applying four two-qubit gates [6]. Therefore, to
predict the true algorithmic fidelity we need to measure
multiqubit fidelity metrics.

Fortunately, the issue of scaling can be circumvented
if the goal is to characterize a process based on a few
measures, e.g., average gate fidelity. Based on this idea,
there have been several proposed techniques such as

Monte Carlo sampling [7, 8], compressed sensing [9], ma-
trix product state tomography [10], and twirling proto-
cols [11] which have been applied in a variety of mul-
tiqubit systems such as photons [12], NMR [13], and
trapped ions [14]. Furthermore, the fidelity of cer-
tain multiqubit entangled states can be efficiently mea-
sured, as was demonstrated for 10 [15] and 12 [16]
qubit states[16]. However, a common drawback to these
techniques is that the result is sensitive to preparation
and measurement errors (sometimes exponentially so)
and/or does not fully characterize the underlying gates.
These problems are addressed by randomized bench-
marking [17, 18] (RB), where sequences of random Clif-
ford gates equaling the identity operator are applied to
a set of qubits. The decay of qubit polarization versus
sequence length measures the average fidelity of the Clif-
ford set independent of preparation and measurement er-
rors. RB is a method widely used to characterize gates
in superconducting circuits [6, 19–21], ion-traps [17, 22–
24], neutral-atom-traps [25], NMR systems [26] and for
solid-state spin qubits [27]. Extensions to RB have been
proposed and implemented to measure specific gate error
via interleaving [28], purity [29, 30] and leakage [31, 32].

RB is designed to address fidelities in multiqubit sys-
tems in two ways. For one, RB can be performed by
constructing sequences from the n-qubit Clifford group.
Additionally, the n-qubit space can be subdivided into
sets of qubits {ni} and ni-qubit RB performed in each
subset simultaneously [33]. Both methods give metrics of
fidelity in the n-qubit space. Despite the availability of
these two methods, there has been no demonstration of
RB with n > 2 since it is viewed as sufficient to charac-
terize only the primitive gateset. Here we show, for the
first time, a variety of three-qubit RB combinations in a
three-qubit fixed-frequency superconducting device. For
all-to-all gate connectivity we measure a three-qubit error
per Clifford (3Q EPC) of 0.106, which is well-predicted
by the primitive gate errors from simultaneous RB. How-
ever, we find a strong dependence on whether we perform
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FIG. 1. (Color Online) (a) Schematic of the experi-
mental setup and connectivity of the CNOT 2Q gates
(control→target). (b) 1Q simultaneous RB {[0], [1], [2]}, (c)
2Q-1Q simultaneous RB {[0, 1], [2]} and (c) 3Q RB {[0, 1, 2]}.
Under each is a sample (b) 1Q (c) 2Q and (d) 3Q Clifford
gate.

gate calibrations collectively or individually; the error in-
creases to 0.302 when gates are calibrated individually.
Importantly, this increase in error is not predicted by
a commensurate increase in the primitive gate errors as
measured from simultaneous RB. The importance of col-
lective gate calibrations was also highlighted by the re-
cent 12-qubit cluster state work of Ref. [16]. We also
show the importance of connectivity in devices as the 3Q
EPC increases to 0.207 when we limit the device to have
linear gate connectivity.

Before describing our experiment in detail we first pro-
vide a brief summary of the RB method; a detailed dis-
cussion of RB can be found in Ref [34]. The idea is to
construct an m-length sequence of random n-qubit Clif-
ford gates

∏m−1
i {Cn,i} = C̃n,m−1 which is appended

by the inverse of the sequence C̃−1
n,m−1. Such an in-

verse is efficiently calculated by the Gottesman-Knill the-

orem [35]. Starting in the state |0〉⊗n and applying the
full sequence of Clifford gates, we then measure the pop-
ulation in |0〉 of each qubit. This procedure is repeated l
times for different random sequences, which in the limit
of large l, twirls the error map to a depolarizing error
map Λ[ρ] = αρ + (1 − α)I/d where p = 1 − α is the de-
polarizing probability. The population in |0〉 versus the
sequence length fits to an exponential decay Aαm + B
and the average error over the Clifford gates is

EPC =
2n − 1

2n
(1− α) , (1)

(for a wide variety of noise models [36–38]). State
preparation and measurement errors do not affect the
decay constant. The number of gates in the Clifford
group grows superexponentially — there are 24 one-
qubit gates, 11520 two-qubit gates and 92897280 three-
qubit gates [39]. However, the method only requires fair
sampling from this set. Each gate is constructed from
a set of primitive gates and the exact number of 1Q
and 2Q gates required depends on the basis used. In
this work, our 2Q gate is a controlled NOT (CNOTij)
where i is the control and j is the target. We generate
our 1Q and 2Q Clifford gates using the set of 1Q gates

{I,Xπ/2, X−π/2, Yπ/2, Y−π/2} where Pθ = e−iθ/2P̂ . With
this gate set there are 2.2083 1Q primitive gates per 1Q
Clifford and 1.5 CNOT gates and 12.2167 1Q gates per
2Q Clifford. To generate the 3Q Cliffords we use the set
of 1Q gates {Xπ/2, X−π/2, Y−π/2} plus arbitrary Z rota-
tions, which are software defined [19]; this is the set used
by the Qiskit compiler [40]. For all-to-all connectivity
there are 3.5 CNOT gates and 11.6 1Q gates (counting
only X and Y ). We use the Qiskit compiler to change the
connectivity by removing one of the CNOT gates which
results in an average of 7.7 CNOT gates and 18.4 1Q
gates per 3Q Clifford. Sample 1Q, 2Q and 3Q Cliffords
are shown in Fig. 1.

In the case of multiqubit systems, RB may be per-
formed on the full n-qubits (as detailed above), or on
subsets of the system. For example, it is common to per-
form 2Q RB on the subset of two-qubits defining a CNOT
gate while the other qubits are quiescent. As explained in
Ref [33], this RB data will not necessarily decay exponen-
tially because the other qubit subspaces are not twirled.
Subsets are more rigorously characterized by simultane-
ous RB, which also measures some level of crosstalk error
since all qubits are active. Herein we will use the notation
{[i, j], ..., [k]} to denote benchmarking where the mth set
of nm qubits is performing independent nm-qubit RB.
For example {[0], [1, 2]} would indicate 1Q RB on qubit
0 and 2Q RB on qubits 1 and 2. The different combina-
tions for three-qubits are shown in Fig. 1.

To test 3Q RB we use a device comprised of three fixed-
frequency superconducting transmon qubits (Q0,Q1,Q2)
of frequencies (5.353,5.291,5.237) GHz coupled to a com-
mon 6.17GHz bus resonator. Our 1Q gates are 44.8 ns
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wide DRAG shaped microwave pulses [41]. Our 2Q
gates are Gaussian smoothed square microwave pulses
applied to a qubit (the control) at the frequency of one
of the other qubits (the target). This activates a cross-
resonance interaction, which can be tuned to build a com-
posite pulse CNOT gate of 240 ns; details are found in
Ref [42]. A schematic of the device and CNOT connec-
tivity is shown in Fig. 1. More device details are given
in Ref. [43].

For our three-qubit system we consider 8 pos-
sible RB combinations: simultaneous 1Q RB
({[0], [1], [2]}), separate 2Q RB ({[0, 1]},{[0, 2]},{[1, 2]}),
simultaneous 2Q RB and 1Q RB (2Q-1Q RB)
({[0, 1], [2]},{[0, 2], [1]},{[1, 2], [0]}) and, finally, 3Q
RB ({[0, 1, 2]}). For each combination we perform l = 30
averages (except for separate 2Q RB where l = 20). For
simultaneous RB we attempt to match the sequence
lengths on the different subsystems, so we use a ratio of
9:1 1Q:2Q Clifford gates for 2Q-1Q simultaneous RB.
We perform these RB sequences under two different cal-
ibration procedures. In procedure A we calibrate the 1Q
gate parameters simultaneously, e.g., qubit frequency,
pulse amplitude and drag amplitude. In procedure B we
calibrate the 1Q gate parameters individually. In both
cases we calibrate the 2Q gates separately. To give a
sense of the types of curves produced from 1Q, 2Q and
3Q RB, a subset of the data from calibration A is shown
in Fig. 2. The errors from the full RB set and for both
calibrations are summarized in Table I.

The data from Table I demonstrate that 2Q gate er-
rors from 2Q-1Q RB are worse, consistent with increased
crosstalk. There is one exception, CNOT12, for calibra-
tion A which decreases from 2.8×10−2 to 1.74×10−2.
This highlights the difference between the calibration
procedures, mainly that they result in different calibrated
values for the qubit frequency. The qubit frequencies
in calibration A are shifted by the average ZZ interac-
tion between pairs (ZZ01=20 kHz, ZZ02=352 kHz and
ZZ12=114 kHz). Since the ZZ02 shift is calibrated into
the frequency of Q2 for calibration A, there is a Z er-
ror when benchmarking CNOT12 if Q0 is in the ground
state; the opposite is true for calibration B and so the
standalone CNOT12 RB error is very low (0.92×10−2).
Although there is only a subtle difference between the
calibration procedures, there is a large difference between
the 3Q RB errors illustrating how 3Q RB can be a sensi-
tive probe of such calibration procedures on algorithmic
fidelity. Overall, calibrating the average ZZ into the qubit
frequencies maximizes 3Q fidelity. The Table I data also
show the importance of connectivity as omitting one of
the CNOTs causes the algorithmic error to increase ap-
preciably.

One of the main questions about 3Q RB is how much
new information does it convey, i.e., can 3Q errors be
predicted from the 1Q and 2Q errors (more specifically,
the 1Q and 2Q depolarizing rates)? To answer this ques-

FIG. 2. (Color Online) Qubit 0 experimental data from dif-
ferent RB sequences for calibration A. Black lines are ex-
ponential fits to the data and the gray points are from the
individual trials. Red squares (blue diamonds) are the aver-
ages over these trials for the light gray (dark gray) points.
(a) 1Q RB from simultaneous 1Q (red squares) and 2Q-1Q
RB (blue diamonds). (b) 2Q RB for the 01 pair performed
in isolation (red square) and simultaneously with 1Q RB on
Q2 (blue diamonds). (c) 3Q RB for all-to-all connectivity
(red squares) and for limited (no CNOT12) connectivity (blue
squares). The decay parameters from these fits are given in
Ref. [43].

tion we calculate the predicted 3Q decay parameter α
(converting to EPC using Eqn. 1),

α3Q =
α
N1/3
1Q α

2N3/3
2Q

7

(
1 + 3α

N1/3
1Q α

N2/3
2Q +

3α
2N1/3
1Q α

N2/3
2Q

)
(2)

where N2 (N1) is the number of 2Q (1Q) gates per 3Q
Clifford, and p1 = 1 − α1(p2 = 1 − α2) are the 1Q (2Q)
depolarizing probabilities. For simplicity we assume that
all 1Q gates and 2Q gates have the same depolarizing
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Cal. A Cal. B

T1 [29,50,39] µs [42,47,35] µs

T2 [39,75,59] µs [61,74,46] µs

1Q EPG Coherence Limit [6.5,3.5,4.4]×10−4 [4.2,3.6,5.4]×10−4

1Q EPG from {[0], [1], [2]} RB [1.12(2),0.86(1),1.22(2)]×10−3 [1.40(5),0.81(1),1.66(4)]×10−3

1Q EPG from {[i], [j, k]} RB [1.41(3),0.95(2),1.35(2)]×10−3 [1.68(4),0.95(2),1.54(3)]×10−3

2Q EPG Coherence Limit [6,7,5]×10−3 [5,6,6]×10−3

2Q EPG from {[i, j]} RB [1.26(7),1.15(8),2.8(2)]×10−2 [0.86(5),2.8(1),0.92(7)]×10−2

2Q EPG from {[i, j], [k]} RB [1.89(6),1.62(6),1.74(7)]×10−2 [2.45(8),4.2(2),4.3(2)]×10−2

3Q EPC from {[0, 1, 2]} RB (all-to-all) 0.106(2) 0.302(6)

3Q EPC from {[0, 1, 2]} RB (omit CNOT12) 0.207(3) N/A

TABLE I. EPG (error per gate) and EPC (error per Clifford) from different RB experiments in [Q0,Q1,Q2] order for 1Q (one-
qubit) EPG and in order [CNOT01, CNOT02, CNOT12] for the 2Q (two-qubit) EPG. 1Q EPG is the error per gate averaged
over the set indicated in the main text. 2Q EPG is calculated from the 2Q EPC assuming the 1Q EPG from {[0], [1], [2]}
benchmarking (see [43] for details of this calculation). 3Q EPC omitting CNOT12 for calibration B is N/A because the error
was too high to properly fit the data. The coherence limited errors are calculated assuming only errors from T1 and T2.
Variability in T1 and T2 between the calibrations is due to drift over the approximately three days between experiments. Errors
reflect the uncertainty in the fit parameters.

Cal. A Cal. B

All-to-All Omit
CNOT12

All-to-All

3Q EPC from RB 0.106(2) 0.207(3) 0.302(6)

Coherence Limit 0.044 0.094 0.041

3Q EPC Predicted
from {[i], [j, k]} RB

0.115(4) 0.226(6) 0.187(7)

TABLE II. Predicted 3Q EPC from 1Q and 2Q EPG numbers
listed in Table I by applying Eqn. 2. See the main text for a
detailed discussion of the calculation.

probability; see [43] for the general form of Eqn. 2 and
details of the derivation. The values discussed previously
for N1 and N2 did not consider the finite duration of
gates. In reality, there will be idle periods on some qubits
and characterizing idle periods as one-qubit gates, N1 =
34.7 (N1 = 67.9) for all-to-all (limited) connectivity. This
is the number used for predicting the 3Q EPC.

For the 1Q and 2Q depolarizing probabilities in Eqn (2)
we use two sets of numbers from Table I to calculate the
predicted 3Q EPC shown in Table II. The first set are the
coherence limited EPGs which unsurprisingly predict a
much lower than measured 3Q EPC indicating that the
majority of errors are due to unwanted and uncompen-
sated terms in the Hamiltonian such as crosstalk. The
second set of numbers are from 2Q-1Q simultaneous RB,
which should be the most accurate measure of primitive
gate errors. Indeed, for calibration A the predicted 3Q
EPC is accurate for both all-to-all and limited connectiv-
ity. However, in the case of calibration B, there is very
little agreement between the predicted and measured 3Q
EPC, demonstrating the utility of the 3Q RB fidelity as a
novel multiqubit metric sensitive to subtle errors that are

not fully revealed by benchmarking the primitive gates.
In calibration B the uncompensated ZZ errors are ampli-
fied by the specific structure of the 3Q Clifford gate since
there are idle periods on the spectator qubits while the
other qubits perform the 2Q gate (this is schematically
illustrated in Fig. 1 d.). Simulations including the mea-
sured 1Q/2Q errors and ZZ predict well the observed 3Q
RB data, see Ref. [43]. Since the implementation of the
3Q Clifford gate is not unique, certain constructions may
amplify or attenuate different error terms; investigating
such constructions in detail is left for future study.

In conclusion, we demonstrate, for the first time, 3Q
RB and subset 2Q-1Q simultaneous RB. Although there
is no true primitive three-qubit gate, 3Q RB measures
a fidelity that is not captured by the one- and two-
qubit gate metrics. As systems continue to increase in
size and crosstalk terms dominate error, metrics such
as 3Q RB will play an important role in benchmarking
the true algorithmic fidelity of these large systems. Al-
though 3Q RB does not indicate how to correct crosstalk
errors, it will play an important role in validating mit-
igation strategies. Software and hardware methods to
suppress crosstalk are an active area of research and may
require the use of active elements such as tunable cou-
plers [44, 45].
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