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Optical fluorescence imaging is capable of measuring both the translational and rotational dynam-
ics of single molecules. However, unavoidable measurement noise will result in inaccurate estimates
of rotational dynamics, causing a molecule to appear to be more rotationally constrained than it
actually is. We report a mathematical framework to compute the fundamental limit of accuracy
in measuring the rotational mobility of dipole-like emitters. By applying our framework to both
in-plane and three-dimensional methods, we provide a means to choose the optimal orientation-
measurement technique based on experimental conditions.

Fluorescence microscopy has been widely utilized to
study the rotational dynamics of single molecules (SMs),
revealing new insights into DNA organization [1–3] and
the movement of molecular motors [4–8]. Orientation
measurements are also critical for ensuring the accuracy
of SM localization microscopy [9–12], since changes in
orientation can be mistakenly perceived as changes in
molecular position. To sensitively measure dipole orien-
tation, a fluorescence microscope is typically augmented
either by measuring fluorescence emission under varying
pumping polarization, by manipulating the polarization
and/or angular spectrum of the fluorescence emission, or
both [13]. Analyzing an SM’s fluorescence signal thereby
yields its average orientation and/or its rotational mobil-
ity or “wobble” during some integration time.

One intuitive method to measure SM orientation is
to quantify linear dichroism (LD) [14–17], i.e., the ra-
tio of the difference over the sum of the intensity of the
x- and y-polarized emission from a single emitter. A
rotationally-fixed SM will yield a certain LD value de-
pending upon its orientation, but due to symmetry, a
rotationally-unconstrained SM will give an LD of zero.
However, measurement noise, e.g., photon shot noise, will
almost certainly produce a nonzero LD and therefore re-
duce the apparent molecular wobble. This phenomenon
is similar to the effect of finite localization precision in
single-particle tracking [18–22], where a translationally-
fixed particle appears to have a nonzero diffusion coeffi-
cient due to shot noise. However, in the case of rotational
dynamics, the non-zero estimates of LD cause the mea-
surement of rotational mobility to be biased; the molecule
will appear to be more constrained than it actually is. To
our knowledge, the effects of noise and measurement sen-
sitivity and the impact of 2D versus 3D measurements on
the accuracy of quantifying SM rotational dynamics re-
main unexplored.

Here, we present a mathematical framework to com-
pute the distribution, accuracy, and precision of mea-
suring the rotational constraint (inversely proportional
to rotational mobility) of dipole-like emitters in both 2D
and 3D. For a given imaging scenario with a certain num-

ber of signal and background photons detected, we derive
a lower bound on the apparent rotational constraint, that
is, the expectation of estimated rotational constraint for
a freely-rotating molecule; it is impossible to detect a
constraint smaller than this limit. Further, we derive a
relation between the measured in (xy)-plane and 3D ro-
tational constraints, which reveals how 2D and 3D meth-
ods perceive the same 3D rotational diffusion differently.
We then analyze the accuracy and precision of various
commonly-used and state-of-the-art 2D and 3D orienta-
tion measurement techniques.
We model a fluorescent molecule as a radiating dipole

[23] with orientation µ = [µx, µy, µz]
†, where µz is the

out-of-plane component, i.e., the projection of µ along
the optical axis. Since fluorescence intensity and not elec-
tric field is detected, both excitation and emission mod-
ulation methods are limited to measuring the even-order
moments of µ. The recorded image g ∈ R

n×1
≥0 , where the

dimension n is the number of pixels or groupings thereof,
can then be represented using the second moments of µ,
given by

g = s[Bxx,Byy,Bzz,Bxy,Bxz,Byz]

[〈µ2
x〉, 〈µ2

y〉, 〈µ2
z〉, 〈µxµy〉, 〈µxµz〉, 〈µyµz〉]† + b (1)

for a 3D measurement and

g = s[Bxx,Byy,Bxy][〈ζ2x〉, 〈ζ2y 〉, 〈ζxζy〉]† + b (2)

for an in-plane (2D) measurement, whereBij ∈ R
n×1 are

termed the basis images of the imaging system. The im-
age produced by an emitter will be a mixture of these
images weighted by the orientational second moments
〈µiµj〉. The prefactor s and image b ∈ R

n×1 represent
the integrated signal photons and background photons,
respectively, for each measurement g. The second mo-

ment vector ζ = [ζx, ζy]
† = [µx, µy]

†/
√

µ2
x + µ2

y is the

normalized projection of molecular orientation µ into the
xy plane, and the angle brackets 〈·〉 denote the temporal
average taken over one camera frame or the equivalent
average over the orientation domain. The basis images
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can be computed for any excitation-modulation method
by computing the SM’s response to varying excitation po-
larization [3] and for any emission-modulation technique
using vectorial diffraction models [24–28].
The accuracy and precision with which the rotational

constraint of a single molecule can be estimated depend
on three factors: 1) the detected photons from the emit-
ter, i.e., its signal, 2) background fluorescence, and 3)
most importantly, the basis-image matrix that describes
the sensitivity of the imaging system to each orienta-
tional second moment 〈µiµj〉. To illustrate these ef-
fects, we evaluate a simple 2D method where we pump
an SM using three distinct in-plane excitation polariza-
tions Ei and observe the corresponding emission intensi-
ties g = [g1, g2, g3]

† [29] (Fig. S1(b)).
The normalized second moments are computed by

inverting the basis matrix: [〈ζ2x〉, 〈ζ2y 〉, 〈ζxζy〉]† =

B−1
ExMod(g − b)/s. Rearranging them into a 2-by-2 Her-

mitian matrix M2D and decomposing it as

M2D =

[

〈ζ2x〉 〈ζxζy〉
〈ζxζy〉 〈ζ2y 〉

]

= γ2Dν1ν
†
1 +

1− γ2D
2

I, (3)

we obtain the in-plane rotational constraint γ2D = 2λ1−1
(Fig. S3). The scalars λi and vectors νi represent the ith
eigenvalue and eigenvector of M2D, respectively. The
matrix M2D can be interpreted as a mixture of a fixed
dipole with orientation ν1 and intensity fraction γ2D and
an isotropic emitter with intensity fraction 1− γ2D. The
rotational constraint γ2D = 1 represents a completely im-
mobile emitter, and γ2D = 0 represents a freely-rotating
molecule. Further, since rotational correlation times are
typically 1-30 ns for fluorophores in liquids [11, 30] and
practical camera integration times are 1 ms or longer, ro-
tational constraint measurements are typically indicative
of the full range orientations explored by each molecule
[29].
We assume that the measured second-order moments
ˆ〈ζiζj〉 follow unbiased Gaussian distributions with pre-

cision achieving the Cramér-Rao lower bound (CRLB)
[31]. Therefore, for a simplified case where the three ex-
citation polarizations are symmetric and linear and the
average orientation of the emitter lies within the xz plane
(ζ̄y = 0), the probability density function (PDF) of mea-
surements of rotational constraint γ̂2D is given by [29]

p(γ̂2D) =
γ̂2D
4σ2

exp

(

− γ̂2
2D + γ2

2D

8σ2

)

I0

(

γ̂2Dγ2D
4σ2

)

. (4)

The measurement precision of the second moments is σ =
σCRLB

ˆ〈ζ2
x
〉

= σCRLB
ˆ〈ζxζy〉

, γ2D is the true rotational constraint of

the SM, and Ik(·) is the modified Bessel function of the
first kind. This PDF matches simulated measurements
using realistic noise (Fig. S4). The expectation of γ̂2D
(Fig. 1(b)) is given by [32]

E(γ̂2D) = σ
√
2πL

(0)
1/2

(

−γ2
2D

8σ2

)

, (5)

where L
(k)
p is the generalized Laguerre function. Criti-

cally, this expectation does not equal the true constraint
γ2D for any nonzero measurement precision σ.

(i) (ii) (iii)(a)

(b)
(c)

FIG. 1. Distribution and bias of rotational constraint mea-
surements γ̂2D using in-plane excitation polarization modula-
tion. (a) A non-central chi PDF describes the distribution of
γ̂2D under s = (i) 1000, (ii) 2000, and (iii) 3000 signal photons
with 1

†
b = 7290 background photons per 526.5 × 526.5 nm2

(3.5× FWHM of a diffraction-limited spot) region. Solid line:
isotropic emitters, dashed line: emitter whose bias is smaller
by 1/e compared to an isotropic emitter. Circles and dia-
monds on the x axis represent the mean of the aforementioned
two distributions, respectively. (b) Average bias in γ̂2D versus
the ground truth γ2D. Blue, green, and orange represent 1000,
2000, and 3000 signal photons, respectively. Circles and dia-
monds correspond to the same data points in (a). (c) Bias in
the measured rotational constraint of isotropic emitters scales
linearly with the inverse of SNR,

√
s+ 1†b/s. Solid circles:

γ̂2D, open circles: γ̂3D.

For a typical background of 30 photons per 58.5 ×
58.5 nm2 (one camera pixel in object space), the expected
biases γ̂2D−γ2D for an isotropic emitter when 1000, 2000,
3000 signal photons are detected are 0.16, 0.09, and 0.06,
respectively. To provide physical intuition, these biases
correspond to half-angle errors of 13◦, 7◦, and 5◦, re-
spectively, if the molecule is uniformly diffusing within a
wedge in the xy plane. The error in rotational constraint
decays as wobble decreases. Brighter emitters further re-
duce errors in rotational constraint. The bias is reduced
to 1/e times its maximum, which occurs at γ2D = 0,
when γ2D = 0.16, 0.08, and 0.05 for 1000, 2000, and 3000
photons detected, respectively (Fig. 1(a),(b)).
For an isotropic emitter, gi is invariant for differ-

ent excitation polarizations, and therefore, the preci-
sion of the second-moment estimates is expressed as
σ =

√

(s+ 1†b)/2/s [29]. Therefore, the average ap-
parent rotational constraint is given by

E(γ̂2D,iso) =
√
π

√
s+ 1†b

s
=

√
π

SNR
, (6)

where the bias in the apparent rotational constraint
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scales linearly with the inverse of the signal-to-noise ratio
(SNR, Fig. 1(c)).
We now extend our framework to measurements of 3D

orientation, similarly assembling a 3× 3 second-moment
matrix and decomposing it as [29]

M3D = γ3Dν1ν
†
1 +

(1− γ3D)

3
I +

3
∑

i=2

(

(−1)i

2
λiνiν

†
i

)

,

(7)
where the 3D rotational constraint γ3D = (3λ1 − 1)/2. If
the molecule’s rotational diffusion is symmetric around a
certain average orientation, then the smaller eigenvalues
λ2 and λ3 are identical due to symmetry. Similarly, the
matrix M3D can be viewed as a mixture of a fixed dipole
and an isotropic emitter, plus a nuisance term that is
orthogonal to ν1 that arises from asymmetric rotation.
In contrast to the case of 2D excitation modulation, the
eigenvalues of the measured second-moment matrix M̂3D

do not have a closed-form distribution. We therefore
perform Monte Carlo simulations on isotropic emitters
imaged using the Tri-spot point spread function (PSF)
[33] (Fig. S1(c)). The linear relation between the bias
in γ̂3D and the inverse of SNR still approximately holds
(Fig. 1(c)).
Although both 2D (Eq. (3)) and 3D (Eq. (7)) rota-

tional constraints have identical interpretations for lim-
iting cases, e.g., γ2D = γ3D = 0 represents a rotationally-
free emitter, these two quantities may differ for any
partially-constrained dipole emitter. That is, identical
3D orientation trajectories can produce different rota-
tional diffusion measurements in 2D versus 3D. Here, we
consider a symmetrically-rotating molecule in 3D and as-
semble M2D using a subset of elements from M3D [29].
The in-plane rotational constraint γ2D is now given by

γ2D =
3(1− µ̄2

z)

1− 3µ̄2
z + 2/γ3D

. (8)

The 2D and 3D rotational constraints are identical for
a molecule exhibiting an average out-of-plane component
of µ̄2

z = 1/3 (corresponding to a “magic” polar angle
≈ 54.7◦, Fig. 2a). Note that γ2D depends on both the
3D rotational constraint γ3D and average out-of-plane
orientation µ̄z ; in-plane orientation measurement meth-
ods are only sensitive to γ2D and must incorporate prior
knowledge of µ̄z in order to compute an equivalent 3D
rotational constraint γ3D. The average difference in con-
straint ∆γ = γ2D − γ3D (Fig. 2(c)) is within ±0.1 for
µ̄z ≤ 0.8, indicating that both γ2D and γ3D quantify
the rotational dynamics of a dipole emitter similarly as
long as the out-of-plane component is small. However,
for a molecule that is almost along the optical axis, e.g.
µ̄z = 0.98 or polar angle = 11◦, |∆γ| can be as large as
0.61; a highly-constrained molecule in 3D (γ3D = 0.80 or
a cone half-angle of 30◦) appears to be almost completely
unconstrained using an in-plane measurement method

(a) (b)

(c) (d)

FIG. 2. Comparison of in-plane γ2D and 3D γ3D rotational
constraints. (a) The relation between γ2D and γ3D varies with
the average orientation along the z axis, µ̄z (Eq. 8). Black

line corresponds to µ̄z =
√

1/3 ≈ cos 54.7◦ so that γ2D =
γ3D. (b) A dipole emitter with an out-of-plane orientation
µ̄z = 0.75 that has γ3D = 0.81 (a cone half-angle of 30◦,
open circle in (a)) appears to be more rotationally free in
the xy plane (γ2D = 0.73, wedge half-angle of 38◦). (c) The
mean difference ∆γ across all 3D orientation space ranges
from -1 to 0.06. Solid line represents the average across all
possible values of γ3D, and the shaded region represents the
range of the difference. (d) 3D enhancement factor F3D as a
function of γ3D and µ̄z. Solid line represents the equilibrium
point where in-plane and 3D rotational constraints measure
changes in rotational dynamics with equal sensitivity. Dashed
line represents a ±10% difference in sensitivity.

(γ2D = 0.20 or a wedge half-angle of 75◦). This interde-
pendence of µz, γ2D, and γ3D has important implications
for orientation-measurement techniques. If a technique
cannot measure all six second-moments in 3D directly,
then one must use a prior assumption on the out-of-plane
orientation to calculate the rotational constraint (or vice
versa). Any errors in this assumption can dramatically
impact measurement accuracy.
A natural consequence of using 2D versus 3D orienta-

tion measurements is that these techniques have different
sensitivities for measuring changes in rotational dynam-
ics. Here, we quantify the enhancement factor F3D as
the ratio of partial derivatives of γ3D to γ2D (Fig. 2(d)):

F3D =
∂γ3D
∂γ2D

=

(

γ3D(1 − 3µ̄2
z) + 2

)2

6(1− µ̄2
z)

. (9)

An enhancement factor F3D greater than one implies that
a given change in γ̂3D maps to a smaller change in γ̂2D,
i.e., for the same measurement uncertainty, it is easier to
detect a change in γ̂3D than γ̂2D. The sensitivity of the in-
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plane measurement to a change in rotational constraint
highly depends on the out-of-plane component of molec-
ular orientation. For example, for the aforementioned
molecule with µ̄z = 0.98, an in-plane technique is espe-
cially insensitive to changes in rotational motion for most
values of γ3D. However, when the molecule is almost im-
mobile, the in-plane method becomes very sensitive, i.e.,
a small change in γ3D produces a large, easily-detectable
change in γ̂2D.

FIG. 3. Bias and precision of rotational constraint mea-
surements using various techniques. (a) Minimum detectable
rotational constraint for various numbers of signal photons
and 4860 total background photons. Solid line represents
the expectation of measured rotational constraint γ̂3D for
isotropic emitters; dashed line represents the corresponding
cone half-angle α̂ if the molecule is symmetrically diffus-
ing in a cone. (b) Concept of (i) a horizontally- and (ii) a
vertically-orientated fluorescent molecule within a lipid mem-
brane. (c) Distribution of 3D rotational constraint estimates
γ̂3D. Solid line: true rotational constraint γ3D = 0.2 (cone
half-angle α = 72◦); dashed line: γ3D = 0.8 (α = 31◦). (d)
Bias of γ̂3D for each technique. Green: in-plane excitation
modulation, blue: Tri-spot PSF, red: standard PSF, orange:
back focal plane imaging, purple: ideal basis-image matrix.

To provide quantitative metrics for choosing the op-
timal orientation measurement technique, we compare
multiple popular and state-of-the-art methods. We first
consider an ideal 3D (6× 6) basis-image matrix [29]

Bideal =
1

2

[

I3 I3
I3 −I3

]

, (10)

such that each column of Bideal is orthogonal and has
identical energy. The average apparent 3D rotational

constraint for an isotropic emitter is given by [29]

E(γ̂3D,iso) =
η
√
3

2

√
s+ 1†b

s
=

η
√
3

2 SNR
, (11)

where η ≈ 1.848 is the expectation of the largest eigen-
value of a Hermitian random matrix H whose elements
Hij are i.i.d. standard normal random variables. The
imaging system represented by Bideal separates the six
second-moments into independent measurements with
ideal collection efficiency and, thus, represents a funda-
mental limit on the measurement accuracy of 3D rota-
tional constraint. That is, for a finite SNR, a freely-
rotating molecule would appear to be identical to a
partially-fixed emitter using any 3D orientation mea-
surement method, and the apparent constraint is always
greater than or equal to that measured by Eq. (11) [29].
To provide physical intuition (Fig. 3(a)), for 1000 signal
photons and 30 background photons per pixel detected,
the expectation of γ̂3D is 0.12, meaning that an SM dif-
fusing within a cone of half-angle α = 78◦ would be in-
distinguishable from a rotationally-free SM (α = 90◦).
Besides the aforementioned ideal, Tri-spot, and in-

plane excitation methods, we also analyze the perfor-
mance of fitting fine features of the standard PSF [34]
and direct imaging of the back focal plane (BFP) [25]
(Fig. S1(d,e)). We simulated two limiting cases, mim-
icking two orientations of fluorescent dye molecules em-
bedded within a lipid membrane [35] (Fig. 3(b)), where
the average orientation is almost perpendicular (Fig. 3(i),
µ̄z = 0.02) and almost parallel (Fig. 3(ii), µ̄z = 0.98) to
the optical axis. The simulated SNR for all the methods
is 3000 signal photons to 20 total background photons
per pixel per unit time [29].
The Tri-spot PSF and BFP imaging exhibit consistent

performance for both in-plane and out-of-plane molecules
due to their relatively uniform sensitivity for measuring
all orientational second-order moments. In-plane excita-
tion, as expected, exhibits high accuracy and precision
(Fig. S7) for in-plane molecules. Its bias in γ̂3D is even
lower than the ideal 3D technique because of the im-
proved SNR of distributing an SM’s photons over 2×
fewer measurements. For out-of-plane molecules how-
ever, its bias and precision are much worse compared
to 3D methods except when the rotational constraint
is sufficiently high. The standard PSF, due to its poor
sensitivity to two out-of-plane second moments, also ex-
hibits a large bias and standard deviation for out-of-plane
molecules. However, it has better performance for mea-
suring the rotational motion of highly constrained in-
plane molecules than the Tri-spot PSF. This analysis im-
plies that a method specifically designed for measuring
a subset of, instead of all six (3D), orientational second
moments can provide superior performance under certain
experimental conditions.
In summary, we analyzed the fundamental bias in

measurements of rotational dynamics caused by finite
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SNR. We derived a lower bound on this bias, that is, no
method can detect a rotational constraint smaller than
this bound without sufficient prior knowledge. While
we defined rotational constraint in terms of the eigenval-
ues of the second-moment matrix M , any parameteriza-
tion of rotational diffusion, e.g., fluorescence anisotropy
[29, 36], or choice of emitter model, e.g., higher-order
multipoles [23, 29], will also suffer bias since any mea-
surement will capture a finite number of photons. Our
framework is easily adaptable for characterizing the bias
of any orientation-measurement method via calculation
of the basis images Bij . We show that there is a complex
relationship between in-plane and 3D molecular orienta-
tion, such that a molecule’s 2D rotational constraint can
appear significantly smaller or larger than its true con-
straint in 3D. Using our framework, we compared multi-

ple methods for measuring rotational dynamics, revealing
how the accuracy and precision of these measurements
vary for in-plane and out-of-plane SMs. In particular,
our results show that 3D methods are particularly im-
portant for quantifying accurately the rotational dynam-
ics of SMs with significant out-of-plane orientations. Our
framework should be useful for choosing between exist-
ing methods and optimizing new techniques that achieve
maximum accuracy and precision in various imaging sce-
narios.
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