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We theoretically propose a method of rectifying spin current with a linearly-polarized electromagnetic
wave in inversion-asymmetric magnetic insulators. To demonstrate the proposal, we consider quantum
spin chains as a simple example; these models are mapped to fermion (spinon) models via Jordan-Wigner
transformation. Using a nonlinear response theory, we find that a dc spin current is generated by the
linearly-polarized waves. The spin current shows rich anisotropic behavior depending on the direction
of the electromagnetic wave. This is a manifestation of the rich interplay between spins and the waves;
inverse Dzyaloshinskii-Moriya, Zeeman, and magnetostriction couplings lead to different behaviors of
the spin current. The resultant spin current is insensitive to the relaxation time of spinons, a property of
which potentially benefits a long-distance propagation of the spin current. An estimate of the required
electromagnetic wave is given.

Introduction — Manipulation of magnetic states and
spin current is a key subject in spintronics [1]. In conduc-
tive materials, the charge current is often used for such pur-
poses; magnetic domain walls are moved by spin-transfer
effect [2], and spin Hall effects are used to generate spin
current [3–6]. Spintronics using magnetic insulators is also
studied, which have several advantages over the metal-
lic materials; magnetic excitations in the insulators typi-
cally have a longer lifetime and no ohmic loss. The mag-
netic states and excitations of these insulators can be con-
trolled by electromagnetic waves. For instance, laser con-
trol of magnetizations [7–12], magnetic interactions [13],
and magnetic textures [14–19], spin-wave propagation by
focused light [20, 21], etc. have been extensively stud-
ied both experimentally and theoretically. These stud-
ies demonstrated the high potential of the electromagnetic
wave in controlling the magnetic states and opened a sub-
field utilizing lights, called opto-spintronics [9, 22].

In contrast, the manipulation of the spin current car-
ried by magnetic excitations is limited to ferromagnets
(spin pumping) [23–25]. On the other hand, other mag-
netic states (antiferromagnetic, spiral, spin liquid states,
etc.) potentially have different advantages such as faster
response [22]. One issue, however, lies in moving the
magnetic excitations; the magnetic excitations do not ac-
celerate/drift by the electromagnetic field because they are
chargeless. This problem is potentially solved by utilizing
the nonlinear response of magnetic insulators [Fig. 1(a,b)].
In the nonlinear optics of noncentrosymmetric electron
systems [26–28], a non-trivial dynamics of electrons dur-
ing the transition process induce a “shift” of the parti-
cle position [29–32]. Recent experiments investigating
this mechanism find the current propagates faster than the
quasi-particle velocity [33, 34]. In addition, it is insensi-
tive to the quasi-particle relaxation time. A spin current
with such interesting properties is potentially possible if
the shift mechanism of magnetic excitations is generated

k

ε /|
J|

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

- 1.0

- 0.5

0.0

0.5

1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
k

(c) (d)

(a)

J(1+δ)

hs -hsJ(1-δ)

(b)

ω

ω

FIG. 1. (Color online) Noncentrosymmetric spin chains consid-
ered in this work. Schematic picture of (a) a dimerized spin chain
and (b) an antiferromagnet of weakly coupled spin chains in a
staggered magnetic field. The model consists of two magnetic
atoms with different g factor and alternating bonds. Band struc-
ture of Jordan-Wigner fermions for (c) δ = hs/J = 0, and (d)
δ = 1/3, and hs/J = 1/10.

by the electromagnetic waves.
To investigate the control of spin current, we here ex-

plore the generation of spin current by the shift mechanism
in a quantum spin chain model [Fig. 1(a)]. We show that
the spin current is indeed generated by simply applying a
linearly-polarized electromagnetic wave if the system pos-
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sesses one of the three kinds of spin-light couplings: in-
verse Dzyaloshinskii-Moriya (DM), Zeeman, and magne-
tostriction couplings. These couplings give rise to rich fea-
tures in the frequency dependence and anisotropy. Interest-
ingly, the spin current is generated by a different transition
process from the electronic photogalvanic effect. The esti-
mate of the magnitude of spin current shows our proposal
gives an observable spin current with a reasonable strength
of electromagnetic wave.

Noncentrosymmetric spin chains — An S = 1/2 spin
chain with staggered exchange and the magnetic field is
used to study the photovoltaic effect of spin current. The
Hamiltonian reads

H =
∑
i

J(1 + (−1)iδ)(Sxi S
x
i+1 + Syi S

y
i+1)

−
∑
i

(h+ (−1)ihs)S
z
i . (1)

Here, Sx,y,zi are S = 1/2 spin operators on site i, J is
the exchange coupling whose energy scale is usually in
gigahertz (GHz) or terahertz (THz) regime, h is the uni-
form magnetic field along z axis, and hs is the staggered
magnetic field. This model has a wide range of applica-
tions. An obvious application is to the one-dimensional
(1D) dimerized XY spin chains with two alternating ions
[Fig. 1(a)]. In this case, the staggered magnetic field
hs reflects different g factors for the odd- and even-site
spins [35–40]. The model can also be viewed as the ef-
fective model for a Néel ordered Ising-like spin chain [41–
43] at zero temperature T = 0 under a staggered magnetic
field, in which the Ising interaction JzSzi S

z
i+1 is treated via

the mean-field approximation Szi = 〈Si〉 + (Szi − 〈Si〉).
For the Néel ordered state, the field (−1)ihs is the sum of
the external staggered field and the mean field Jz〈Si〉 =
(−1)iJzMs (Ms is the staggered magnetization). Further-
more, Eq. (1) can also be applied to three-dimensional an-
tiferromagnets of weakly coupled spin chains under a stag-
gered field [Fig. 1(b)]. Treating the inter-chain coupling
by a mean-field theory [44–47] gives an effective one-
dimensional (1D) model, Eq. (1). Namely, in this system,
the staggered field hs is renormalized by the inter-chain
Néel order. Note that the dimerization parameter δ and the
staggered field hs break site-center and bond-center inver-
sion symmetries, respectively. Such a noncentrosymmetric
nature is necessary for a photogalvanic effect.

The spin model in Eq. (1) is mapped to a fermion model
using Jordan-Wigner (JW) transformation [48–50]. By in-
troducing fermion operators ci ≡ e−iπ

∑i−1
j=1 S

+
j S

−
j S−i and

c†i ≡ S+
i e

iπ
∑i−1
j=1

S+
j S

−
j , Eq. (1) is fermionized as

H =
∑
i

J(1 + (−1)iδ)

2

(
c†i+1ci + c†ici+1

)
+ (h+ (−1)ihs)ni. (2)

Here, S±i ≡ Sxi ± iS
y
i are the ladder operators and ni ≡

c†ici is the number operator for the fermions at ith site.

Figures 1(c) and 1(d) show the band structure of the JW
fermions. The model has a band gap ∆π

2
≡ 2

√
J2δ2 + h2

s

for |δ| < 1 [Fig. 1(d)], while the gap is ∆0 ≡ 2
√
J2 + h2

s

if |δ| > 1. The model is gapless only if hs = δ = 0
[Fig. 1(c)]. Therefore, the ground state is robust against h
as long as h < ∆/2, where ∆ ≡ min(∆0,∆π

2
). We focus

on the weak h region of this model in the rest of this work.
The spin current operator for Sz is defined from the con-

tinuity equation. The current density operator reads

Jsc ≡
1

L

∑
i

J(1 + (−1)iδ)(Sxi+1S
y
i − S

y
i+1S

x
i ), (3)

where L is the number of sites; here, we set the Planck
constant ~ = 1.

Inverse DM coupling — External electromagnetic waves
couple to spins in several different forms. First, we con-
sider the coupling of the electric field to the electric dipole
induced by the inverse DM mechanism [51–53, 56, 57]:

HiDM =Ey(t)
∑
i

(p+ (−1)ips) (Si × Si+1)
z
. (4)

Here, the chain is along the x axis, p∓ ps is the coefficient
for the ferroelectric polarization of odd and even bonds,
and Ey(t) = Ey cos(ωt) is the oscillating electric field
along the y axis with frequency ω (typically, GHz or THz).
Note that at a special point ps/p = δ, the term HiDM is
analogous to the linear-order coupling of the electrons to
the vector potential. We will comment on this case later.

The spin current conductivity is calculated using a
quadratic response formula similar to that for photovoltaic
effects [58]. The formula reads

σ(2)(ω) =
∑
α,β,γ

∫
dk

2π

[fα(k)− fβ(k)]Bαβ(k)

ω − εβ(k) + εα(k)− i/(2τ)

×
[

Bβγ(k)Jγα(k)

εα(k)− εγ(k)− i/(2τ)
− Jβγ(k)Bγα(k)

εγ(k)− εβ(k)− i/(2τ)

]
,

(5)

where εα(k) is the eigenenergy of an αth-band state with
momentum k (|αk〉), fα(k) ≡ (1 + eεα(k)/(kBT ))−1 is the
fermion distribution for |αk〉, τ is the relaxation time of
JW fermions, Jαβ(k) ≡ 〈αk| Jsc |βk〉, and Bαβ(k) ≡
〈αk|HiDM |βk〉. In electronic systems, this formula well
explains the experimentally-observed nonlinear conductiv-
ities [59]. Hereafter, we consider the T = 0 case of
the model in Eq. (2). The conduction and valence bands
[Fig. 1(c) and (d)] respectively correspond to α = + and
−. We focus on the real part of σ(2)(ω) because only the
real part contributes to the spin current. With these simpli-
fications, Eq. (5) becomes

<[σ(2)(ω)] =

1

π
<
{∑

k

B+−(k)J−+(k)[B−−(k)−B++(k)]

ω2 − [ε+,k − ε−,k − i/(2τ)]2

}
,

(6)
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provided that εk± and |B+−|2 are even with respect to k.
Using Eq. (6), the nonlinear conductivity in the τ →∞

limit becomes

<[σ(2)(ω)] = sgn(1− δ2)hs(ps − pδ)(p− psδ)
2πω2J2(1− δ2)2

×
√

(ω2 −∆2
π
2
)(∆2

0 − ω2), (7)

when ∆ ≤ ω ≤ W ≡ max(∆0,∆π
2
). On the other hand,

no spin current appears for a frequency ω < ∆ orW < ω,
which implies that an inter-band optical transition is nec-
essary for the spin current. Figure 2(a) shows the result
for J = 1, δ = 1/3, and hs = 1/10. The conductivity
becomes zero when hs = 0 or ps = δ = 0 and is propor-
tional to hs(ps − pδ). These features reflect the symmetry
property of the conductance. The model becomes inver-
sion symmetric when hs = 0 or ps = δ = 0, and there-
fore, the conductivity vanishes. For the noncentrosymmet-
ric chain, the inversion operation imposes following re-
lations: σ(2)(ω; δ, hs, ps) = −σ(2)(ω;−δ, hs,−ps) and
σ(2)(ω; δ, hs, ps) = −σ(2)(ω; δ,−hs, ps) [60]. Hence,
the lowest order terms in the symmetry-breaking param-
eters are proportional to hsδ or hsps. Another important
feature is that the spin current vanishes when δ = ps/p.
This is a well-known result in the photocurrent; the pho-
tocurrent induced by the linear-coupling terms vanishes in
two-band models [58]. In contrast, in general, a finite spin
current appears in our case because Bαβ(k) is generally
different from the current operator.

We find that the nonlinear conductance in Eq. (7) shows
a characteristic structure when the frequency is close
to ∆, i.e., close to the lowest frequency with non-zero
<[σ(2)(ω)]. The asymptotic form of <[σ(2)(ω)] reads
σ(2)(ω) ∝

√
δω, where δω = ω − ∆ [60]. This fre-

quency dependence is related to the momentum depen-
dence of g(k) ≡ B+−(k)J−+(k)[B−−(k) − B++(k)] at
the band edge. The real part of g(k) is always zero in our
model. Therefore, Eq. (6) becomes

σ(2)(ω) =
1

8

=[g(k0 + kω)]

ε+(k0 + kω)
ρ[ε+(k0 + kω)], (8)

where ρ(ε) is the density of states (DOS) and kω > 0 is a
wavenumber such that ω = ε+(k0 + kω)− ε−(k0 + kω).
Here, k0 is the location of the band bottom; it is k0 = π/2
(k0 = 0) when 1 > δ2 (1 < δ2). By definition, δω =
ε+(k0 + kω) − ε−(k0 + kω) − ∆ and kω → 0 when
δω → 0. The asymptotic form g(k0 + kω) ∝ knω makes
σ(2)(ω) ∝ δω

n−1
2 through the relations δω ∝ k2ω and ρ ∝

1/
√
δω. For the present case, g(k0 + kω) ∝ k2ω leads

to σ(2)(ω) ∝
√
δω. In other words, the asymptotic form

of σ(2)(ω) reflects g(k), i.e., Bαβ(k). As shown below,
different asymptotic form of g(k) and σ(2)(ω) appears for
different kinds of spin-light couplings.

Zeeman coupling — The Zeeman coupling also con-
tributes to the spin current. We here consider an oscillating
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FIG. 2. (Color online) Frequency dependence of the nonlinear
conductivity σ(2)(ω) for J = 1, δ = 1/3, and hs = 1/10. Figures
(a)-(c) are the results for τ →∞ with (a) inverse Dzyaloshinskii-
Moriya coupling with p = 1, (b) Zeeman coupling, and (c) mag-
netostriction effect with A = x and As = 1 − x. Different lines
in (a) and (c) are the results for different ratio of parameters ps/p
and A/B, respectively. Figures (d)-(f) shows the τ dependence
of (d) inverse DM coupling with p = 1 and ps = 0.2, (e) Zee-
man coupling, and (f) magnetostriction effect with A = 1/3 and
As = 2/3.

magnetic field B(t) = B cos(ωt) parallel to the magnetic
moments. The Hamiltonian reads:

HZ =−B(t)
∑
i

(η − (−1)iηs)S
z
i . (9)

This is in contrast to the case of usual spin pumping [23–
25], in which an oscillating magnetic field perpendicular
to the magnetic moment is considered. The spin current
is calculated using Eq. (6) by the replacement Bαβ(k) →
〈αk|HZ |βk〉. The result reads

σ(2)(ω) =
8sgn(1− δ2)δ J4hsη

2
s

πω2

√(
ω2 −∆2

π
2

)
(∆2

0 − ω2)

, (10)

at T = 0 and τ → ∞. The photocurrent depends on the
staggered magnetic field ηs and not to η. This follows from
the form of the two-band equation in Eq. (6). Naively, three
terms appear for HZ, which are proportional to η2s , η ηs,
and η2. However, the ηηs term has Bαβ(k) = η1̂αβ for
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one of the twoBαβ(k)’s in Eq. (6) [B+−(k) orB−−(k)−
B++(k)]. As B+−(k) = B−−(k) − B++(k) = 0 for
Bαβ(k) = η1̂αβ , the η ηs term vanishes. Similarly, the
η2 term also vanishes. Hence, only the staggered magnetic
field contributes to the spin current.

A notable difference from the inverse DM case appears
at the lower edge of the spectrum at ω = ∆. Fig-
ure 2(b) shows the result of σ(2) for ηs = 1. The
conductivity shows a divergence; the asymptotic form is
σ(2)(ω) ∝ 1/

√
δω [60]. The divergence is a consequence

of the asymptotic form of g(k), which behaves differently
from the asymmetric exchange case; g(k) for the Zeeman
coupling become a constant when ω ↘ ∆. The sub-
stitution of g(k) into Eq. (8) gives the asymptotic form
σ(2) ∝ ρ(kω) ∝ δω−1/2. Hence, the divergence reflects
the structure of the DOS.

We also note that our models discussed here strictly con-
serves the angular momentum. The optical switching [54]
and generation [55] of angular momentum in electronic
systems are recently studied in metallic systems. Here, the
spin-orbit interaction plays a crucial role, which transfers
the angular momentum from the lattice (atoms). In con-
trast, our model strictly conserves the total angular momen-
tum for Sz; the spin current is generated without generat-
ing the angular momentum. This is analogous to the photo-
voltaic effect where the electric current is induced without
generating an electric charge.

Magnetostriction effect — Magnetostriction effect also
leads to a coupling between local exchange interaction
and an external electromagnetic field [56, 57, 66–69]; the
Hamiltonian reads

Hms = Ex(t)
∑
i

{A+ (−1)iAs}(Sxi Sxi+1 + Syi S
y
i+1).

(11)

Here, A and As are the uniform and staggered magne-
tostriction terms, respectively, and Ex(t) = Ex cos(ωt)
is the oscillating electric field along the x axis. A (As) is
the magnetostriction effect for J (Jδ).

The solution for Hms at T = 0 and τ →∞ reads

σ(2)(ω) =− sgn(1− δ2)hs
4πω2J2(1− δ2)2

√
(ω2 −∆2

π
2
)(∆2

0 − ω2)

×
{
A(∆2

π
2
− ω2) +Asδ(ω

2 −∆2
0)
}

×
{
As(∆

2
0 − ω2) +Aδ(ω2 −∆2

π
2
)
}
. (12)

Figure 2(c) shows the ω dependence of σ(2)(ω) for J = 1,
δ = 1/3, and hs = 1/10. Unlike the other two cases, the
asymptotic structure at ω ∼ ∆ changes depending on A
and As. When δ2 < 1, a divergent structure similar to the
Zeeman coupling, σ(2)(ω) ≈ 1√

δω
, appears for As 6= 0.

On the other hand, the conductivity smoothly goes to zero
at ω = ∆ for As = 0; in this case, σ(2)(ω) ≈ δω

3
2 at

the lower edge. Therefore, the magnetostriction effect also

contributes to the spin current with a characteristic behav-
ior at the lower edge ω ∼ ∆. Further details are presented
in the supplementary information [60].

Relaxation time dependence — The τ dependence of a
light-induced current often reflects its microscopic mecha-
nism. For instance, in the study of photovoltaic effect, shift
current does not depend on τ while the injection current is
linearly proportional to τ [26, 30]. The numerical results
of σ(2)(ω) for different τ are shown in Figs. 2(d)-(f); each
figure shows the results for (d) asymmetric exchange, (e)
Zeeman, and (f) magnetostriction couplings. All results are
calculated using L = 214 site chains with periodic bound-
ary condition. The result shows that the photo spin current
is insensitive against the value of τ . Therefore, the spin
current is robust against the suppression of the relaxation
time. This behavior is similar to the shift current in elec-
tronic photogalvanic effects, which is related to the shift of
the center of the mass during the optical transition [60].

The robustness against τ is potentially beneficial for ap-
plications. The energy scale for the magnetic excitations
in magnetic insulators are smaller than the electron excita-
tions in semiconductors. Therefore, a change in the tem-
perature affects the magnetic excitations more seriously. In
particular, the effect of thermal fluctuations often appears
as the decrease of the lifetime. Therefore, the insensitive-
ness of σ(2)(ω) to τ implies the weak effect of heating to
the conversion efficiency.

Discussion — In this work, we explored the generation
of spin current using nonlinear response. To this end, we
considered simple but realistic quantum spin chains with
three different types of couplings between spins and elec-
tromagnetic field: Inverse DM, Zeeman, and magnetostric-
tion couplings. The spin current generated by all three
mechanisms is independent of the relaxation time of the
magnetic excitation. However, our simple model shows the
spin current appears from different microscopic processes
compared with the relaxation-time-independent electronic
photocurrent (shift current) [29, 30, 58]. This feature is
crucial for magnets as the total number of the bands are
much less than the electronic bands. Therefore, our pro-
posal for the spin current is generally expected in simple
magnetic structures.

Another interesting feature is the anisotropy of the spin
current. In our model, the spin current by inverse DM and
magnetostriction couplings can be switched by rotating the
electric field; the field along y axis gives inverse DM com-
ponent while x gives the magnetostriction. Similarly, Zee-
man coupling contributes when the magnetic field along
z axis. This anisotropy in the microscopic mechanism is
reflected in the frequency dependence. Experimentally, the
observation of the anisotropy distinguishes the microscopic
mechanism of the spin current.

We also stress that the mechanism of generating spin cur-
rent differs from spin pumping [23–25]. Unlike the spin
pumping, all three mechanisms we considered preserves
the spin angular momentum along z axis. Therefore, in
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contrast to the spin pumping, no angular momentum is sup-
plied from the electromagnetic waves. The conservation
decidedly shows that the spin current studied here is by the
nontrivial motion of magnetic excitations.

There are several experimental setups for observing the
spin current of our mechanism. The most straightforward
setup is to use an isolated magnet without any attached
leads. In this setup, the spin current accumulates the an-
gular momentum to the edges of the sample. In our mech-
anism, the sign of angular momentum accumulated to one
edge is the opposite of that to the other edge because the
photovoltaic effect carries the angular momentum of one
end to the opposite end. Therefore, observation of the ac-
cumulated angular momentum by Kerr effect or Faraday
rotation should provide evidence for the flow of angular
momentum.

Alternatively, the spin current should be measurable us-
ing the inverse Spin Hall effect [70–72]. In contrast to the
spin pumping case [23, 24], however, the attachment of two
leads (“source” and “drain”) is useful for our mechanism
because our mechanism does not generate angular momen-
tum in the magnets. The angular momentum flows from
one lead (source) to the other lead (drain) if our mecha-
nism is dominant. [60]. In contrast, the spin currents in
the two leads both flow outward in spin pumping or spin
Seebeck effect [73, 74]. Hence, the two-lead setup should
distinguish different mechanisms.

Finally, we compute the strength of an AC electromag-
netic field required for an observable spin current. The
spinon spin current is already realized in the experiment
which is generated by the spin Seebeck effect [74]; we
here use the magnitude of the observed spinon current as
the reference. Using the above results, the required fields
are estimated asE ∼ 105, 104, and 102 V/cm for the cases
of inverse DM, Zeeman, and magnetostriction couplings,
respectively [60]. Therefore, the spin current generated by
all three couplings should be observable in experiments.
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