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Sign-changing interactions constitute a crucial ingredient in the creation of frustrated many-body
systems such as spin glasses. We present here the demonstration of a photon-mediated sign-changing
interaction between Bose-Einstein condensed (BEC) atoms in a confocal cavity. The interaction
between two atoms is of an unusual, nonlocal form proportional to the cosine of the inner product
of the atoms’ position vectors. This interaction arises from the differing Gouy phase shifts of the
cavity’s degenerate modes. The interaction drives a nonequilibrium Dicke-type phase transition
in the system leading to atomic checkerboard density-wave order. Because of the Gouy phase
anomalies, the checkerboard pattern can assume either a sine or cosine-like character. This state is
detected via the holographic imaging of the cavity’s superradiant emission. Together with Ref. [1],
we explore this interaction’s influence on superradiant phase transitions in multimode cavities.
Employing this interaction in cavity QED spin systems may enable the creation of artificial spin
glasses and quantum neural networks.

The strong atom-photon interactions provided by cav-
ity QED [2] open new avenues toward exploring quan-
tum many-body physics in a nonequilibrium setting [3–5].
For example, cavity QED with Rydberg atoms provides
strong nonlinear interactions between photons [6] and
can lead to topologically nontrivial many-body states [7].
Nonequilibrium Dicke superradiant phase transitions [3,
5, 8] and other superradiant transitions [9, 10] have
been observed in transversely pumped cavities with ther-
mal atoms [11] and BECs [12, 13], including transitions
leading to supersolids [14], superradiant Mott insula-
tors [15, 16], and polariton condensates of supermode-
density-waves [17] and spinors [18–20].

Superradiant phase transitions emerge for an ensemble
of randomly distributed atoms trapped inside a trans-
versely pumped cavity [9, 21]. Beyond a threshold pump
strength, the cavity-photon-mediated interaction energy
overcomes the kinetic energy cost associated with the for-
mation of an atomic density wave (DW). Consequently,
the atoms self-organize into a checkerboard pattern on
the lattice formed by the transverse pump and cavity
mode. The phases of the atomic DW and cavity mode are
locked together and locked to either {0, π} with respect
to the pump, thus breaking a Z2 symmetry [9, 13, 22].

In the dispersive limit of cavity QED, where the pump
field is not resonant with the cavity modes, the photon
field may be adiabatically eliminated. These superradi-
ant phase transitions may then be seen to arise from an
effective Hamiltonian with an atom-atom interaction (or
spin-spin interaction for spinful atoms) mediated by the
exchange of virtually excited cavity photons [3, 19, 23].
Single-mode cavities support infinite-range interactions
among the atoms, while multimode cavities provide the
means for tuning the range of interactions [23] and may
allow the formation of superfluid liquid crystalline-like

states [24, 25]. Photon-mediated interactions might also
be possible via the use of photonic waveguides [26] and
are similar to the phonon-mediated interactions demon-
strated among trapped ions [27–29].

While tunable in range, the interactions among neutral
atoms i, j have been demonstrated with only a fixed-sign
coupling Jij [23]. A wider range of many-body phenom-
ena might be possible if Jij were to flip in sign, because
sign-flipping can induce frustrated interactions, as has
been demonstrated with ions [30]. With the addition
of positional randomness, structural [24, 25] and spin
glasses [31, 32] of atoms in multimode cavities and waveg-
uides [33] may be possible. These fascinating states ex-
hibit rigidity that arises from a complex—and in some
limits, unknown—order and symmetry breaking [34, 35].
Creating a tunable-interaction-range spin glass in the
quantum-optical setting would provide a novel platform
for investigating both how such order emerges, and how
quantum phenomena may affect glassy physics.

In a step toward this goal, we demonstrate a sign-
changing, nonlocal Jij using a multimode cavity. Previ-
ously, we presented a derivation of this term and provided
experimental evidence for its existence [23]. However,
the work neither demonstrated its sign-changing prop-
erty, nor explored an additional DW degree of freedom
that arises due to the Gouy phase anomalies. This de-
gree of freedom corresponds to a BEC in a multimode
cavity adopting a DW pattern of either cos krz or sin krz
character (along the cavity axis ẑ). Here, z = 0 is de-
fined at the cavity center, kr = 2π/λ, and λ = 780 nm is
the cavity and pump wavelength. We discuss the nonlo-
cal term and how this new DW degree of freedom can be
tuned before presenting results of three experiments. The
first and second experiments demonstrate the switching
between cos krz or sin krz DWs for a cavity with one
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FIG. 1. (a) Relationship between modes in a near-planar cavity (upper) versus a near-confocal cavity (lower). As R→ L, higher-
order transverse modes shift further in frequency than lower-order modes due to differential Gouy phases. (Near-)degenerate
resonances arise at confocality (R ≈ L) comprised of modes (either even or odd) from different longitudinal families Q with
different longitudinal patterns, as indicated. (b) Sketch of experimental apparatus showing one of two possible BECs (red
sphere) confined within the cavity by optical tweezer traps (not shown). Two images (real and mirror) of the supermode
created by the BEC appear in the cavity emission due the fixed parity of the confocal cavity modes [17, 23, 36]. Spatial
heterodyning of the emitted field is performed by interfering the pump laser (red) and cavity emission (blue) at the EMCCD
camera. (b,c) Simulation illustrating (d) the intracavity field pattern and (e) resulting camera image of the object plane.
Simulated camera image shows two bright spots (emitted from the BEC position and its mirror image) and an oscillating
emission pattern between them. In a ray-tracing picture, the mode of a confocal cavity adopts a bow tie pattern [36]; in the
wave picture shown here, spots emerge from the bow tie’s arms, and an interference pattern from the bow tie’s cross. Unonlocal

arises from photons exchanged via this interference field, hence its oscillatory form, while photons exchanged via the bright
spots induce the U+

local terms. (e) Color wheel illustrating the complex electric field.

and two intracavity BECs, resp., while the third demon-
strates the sign-changing capability of the interaction us-
ing two intracavity BECs moved relative to one another.
A companion paper [1] presents background theory and
corroborating experiments in addition to other aspects of
interactions induced by Gouy phase anomalies.

The nonlocal interaction term Unonlocal arises from the
differing Gouy phase shifts of the degenerate modes of the
near-confocal multimode cavity. Gouy phase anomalies
occur in any focused wave and lead to a phase advance as
the field propagates through its waist [36–41]. Fields of
higher-order Hermite-Gaussian transverse profiles Ξl,m

exhibit Gouy phase shifts that increase as 1 + l + m.
This causes transverse TEMl,m modes of a cavity with
the same longitudinal mode number Q to resonate at
different frequencies. However, when special geometrical
conditions are met, as, e.g., in a confocal cavity, trans-
verse modes with differing Q become degenerate; see
Fig. 1(a). At one such degenerate frequency, all modes
are either even- or odd-parity. We employ an even-parity
resonance, and therefore, mirror images of the same field
amplitude are supported symmetrically across the cavity
axis. See Fig. 1(c).

The differing Gouy phases of the modes affect the
form of the interaction because the photon-mediated
interaction in a multimode cavity arises from the
exchange of photons in a superposition of all available
modes at the positions of the two atoms [23–25]. When

accounted for in the sum over all modes, the Gouy phases
contribute an additional interaction energy Unonlocal to
the local interaction; Ref. [1] provides a more physically
intuitive description of the origin of this effect. The
form of the nonlocal term is derived in Refs. [1, 23] to
be Unonlocal(ri, rj) = J0Dnonlocal(ri, rj) cos krxi cos krxj ,
where ri are (x, y) coordinates of atom i,
Dnonlocal(ri, rj) = cos (2ri · rj/w2

0)/4π, and w0 = 35 µm
is the TEM0,0 mode waist. The coupling strength is
J0 = g20Ω2/∆2

a∆0,0, where g0 = 2π×1.47(3) MHz is the
vacuum Rabi rate for an atom coupled to the center of the
TEM0,0 mode, Ω2 is proportional to the pump intensity,
and ∆a = −2π×102 GHz is the detuning of the pump
from the atomic excited state. The position-dependent
prefactors cos krxi appearing in the interaction arise
due to the standing-wave pump [42]. The local inter-
action is comprised of the real and mirror image terms
U±local(ri, rj) = Ulocal(ri, rj) ± Ulocal(ri,−rj) [1, 23],
where ± correspond to even (odd) resonances; we
employ even.

In addition to Unonlocal, the Gouy phases induce a
division of the cavity resonances into two classes with
alternating out-of-phase longitudinal DW patterns, ei-
ther sin (krz + δ) or cos (krz + δ), where δ = {0, π};
see Fig. 1(a). At an even-mode confocal cavity res-
onance, the total mode function is ΦQ,l,m(x, y, z) ∝
Ξl,m(x, y) cos (krz + δ) for l + m mod 4 = 0 modes,
while ΦQ,l,m(x, y, z) ∝ Ξl,m(x, y) sin (krz + δ) for l +
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m mod 4 = 2 modes [43]. Thus, while in a single-mode
cavity H ∝ J0 cos krzi cos krzj , in a confocal cavity, the
total interaction is

U ∝ Uc(ri, rj) cos krzi cos krzj+Us(ri, rj) sin krzi sin krzj ,

where Uc,s = U+
local ± Unonlocal [1, 23]. Moreover, while

the atomic wavefunction may be expanded as Ψ =
ψ0 +

√
2ψc cos krx cos krz in a single-mode cavity, an

additional atomic field is required in a confocal cavity:
Ψ = ψ0 +

√
2 cos krx[ψc cos krz + ψs sin krz]. Here, ψc,s

are the wavefunctions describing the fraction of atoms
organized into the orthogonal sine versus cosine quadra-
tures of the longitudinal profile; ψ0 is the initial BEC
wavefunction in the optical dipole trap [44]. The BEC
condenses into either the sine or cosine DW according to
which DW minimizes energy at the BEC position. We
note that this choice of DW is solely determined through
Unonlocal since the Uc,s have the same contribution from
U+
local. The remaining Z2 symmetry of the checkerboard

pattern (i.e., the choice of δ = {0, π}) is spontaneously
broken as in a single-mode cavity.

The order parameter associated with the transition is
composed of the fractions of atoms acquiring a λ-periodic
density modulation in either of the two DWs patterns and
the δ phase of the wave therein; in terms of these wave-
functions, the order parameters are χc,s = ψ0ψc,s/N ,
where N is the BEC population. Each χ may be viewed
as a pseudospin with max/min value ±1; the sign of χ
indicates the relative pseudospin alignment. For BECs at
ri and rj , one may transform the system’s light-matter
interaction into an effective spin interaction Hamiltonian
of the form Hij = −Jij(χciχcj − χsiχsj) after spatial in-
tegration [45]. Here, Jij ∝ NJ0Dnonlocal(ri, rj) and N is
each BEC’s population. The total effective single-BEC
Hamiltonian interaction is H1 = Hii. The BEC organizes
into χc or χs depending on which DW pattern minimizes
Hii, i.e., whether Jii is positive or negative. Likewise, for
two BECs of equal size and shape, H2 = Hii+Hjj+2Hij .

The experimental apparatus is shown in Fig. 1(c). The
BECs contain ∼2×105 87Rb atoms in the |F = 1,mF =
−1〉 state. Optical tweezers position and confine each
BEC in a tight trap of diameter <10 µm—smaller than
w0. See Refs. [23, 45, 46] for BEC preparation and optical
tweezing procedures. To measure the field amplitude and
phase of the superradiant emission, the cavity field and
part of the pump are interfered on an EMCCD camera.
This spatial heterodyne measurement is holographically
reconstructed to provide the cavity field amplitude and
phase; see Fig. 1(c-f) and Refs. [19, 47].

Cavity field-emission measurements may be inter-
preted as cavity-enhanced Bragg scattering: in the or-
ganized phase, the transverse pump light is Bragg scat-
tered into the cavity mode from the atomic checkerboard
pattern. The phase of the coherently scattered light is
therefore directly correlated with the phase of the DW.
In addition, in a near-confocal cavity, organization into
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FIG. 2. (a–d) Extracted superradiant field at the two dif-
ferent positions marked in (e). (a,c) Plots of the extracted
normalized field amplitude. (b,d) Plots of the corresponding
phase data. The dotted lines mark the location of the nodes
in the cosine pattern as determined from a functional fit to
Unonlocal. The phase of the electric field flips by π (while the
periodicity shortens) as the BEC’s position r is moved across
a node in the cosine pattern. The length scale in panels (a–d)
is indicated by the white line in panel (a) showing the cavity
waist w0. (e) Plot of the functional form of Jii. The blue
and orange dots mark the position of the BEC for the super-
radiant emission images above. The observed phase change
is consistent with the flipped sign of Jii. (f) Color scale for
extracted phase and electric field amplitude, where the phase
at r = 0 is set to 0.

χc (χs) is heralded by a 0 (π) phase shift between the cav-
ity emission from the position of the BEC and its mirror
image (due to Ulocal) versus that from the center of cav-
ity (due solely to Unonlocal) [1]. This phase shift may be
traced back to the ±-sign difference between the Ulocal

and Unonlocal terms in Uc,s [1]. Figure 2 presents obser-
vations of this effect, where the amplitude and phase of
superradiant emission from a single BEC at two different
positions ri is shown. These data demonstrate the ability
to tune the DW order from a cosine to sine pattern by
controlling ri [48].

Measurements of χc,s are possible using two intracav-
ity BECs. Absent cross-coupling, each BEC can inde-
pendently choose a δ phase of its DW pattern, resulting
in an enlarged Z2 ⊗ Z2 symmetry for the system. De-
tection of their relative checkerboard states is possible
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FIG. 3. (a,b) The measured electric field for two different
realizations of the experiment. The ±π/2 phase difference
between the two BECs indicates that the BEC at r = 0 is
in a cosine DW, while the other is in a sine wave DW. The
sign-flips are indicative of the relative choice of phase δ due
to Z2-symmetry-breaking in each DW. (c) Color disk for the
plotted electric field. The white circular markers register the
phase difference between the two spots in 186 shots of the
experiments. We measured 92 shots of π/2 and 94 shots 3π/2.
The square marker indicates the reference phase of the r = 0
BEC: the phase of the light at r = 0 is set to 0 since we choose
cosine DWs to scatter light with 0 relative phase.

since a χc DW is ±π/2 out of phase from a χs DW,
where the ±-sign reflects the relative δ-phase of their
checkerboard states. That is, the sgn{χc,s} = +1 DW
is δ = π out of phase from the sgn{χc,s} = −1 DW.
To observe this effect, we place one BEC at r1 = 0 and
the other at r2 =

√
πw0/

√
2, as shown in Fig. 3a. This

sets J11 = −J22 = N and the cross-term H12 = 0 be-
cause the Jii terms cause the two BECs to prefer oppo-
site DW quadratures (sine versus cosine). That is, the
cross-terms in H12 vanish χc1χc2 = χs1χs2 = 0 since
χc1 6= 0 & χs1 = 0 for the first BEC and χc2 = 0 &
χs2 6= 0 for the second. This is shown in the measured
electric fields of Fig. 3(b,c). We see that the phase of light
emitted at the r 6= 0 BEC (along with the bow tie inter-
ference fringe at which it is located) is indeed shifted by
±π/2. Because each BEC is free to choose between the
Z2-symmetric checkerboard states within the preferred
DW profile, we observe a random, nearly 50/50 distri-
bution in relative sign over the course of multiple exper-
imental realizations. This lack of Z2-broken-symmetry
bias indicates the absence of inter-BEC coupling (i.e.,
H12 = 0), as intended [49].

Having demonstrated the DW-pattern-shifting effect
of Unonlocal, we now present observations of its sign-
changing character. Again, we use two BECs, but fix
one BEC at r1 =

√
2πw0, which sets J11 = N , while

moving the position r2 of the second BEC in a range
of positions satisfying J22 > 0; see Fig. 4. This causes
each BEC to energetically prefer organization into the
same DW pattern, cos (krz + δ), associated with pseu-
dospins χc1 and χc2, but leaves each DW’s δ (i.e., its
checkerboard pattern) free to be determined through
the nonlocal cross-term interaction J12. The relative
pseudospin alignment of χc1 versus χc2 is then set by
each DW’s choice of δ. The coupling of the DWs via
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FIG. 4. (a–d) Examples of measured fields versus r2 for two
BECs on either side of the cavity center. r1 of the first BEC
is set so that J11/N = 1. Panels (b,c) taken at the r2 where
J12 = 0. Random π phase flips are observed at this position
and in the vicinity of small J12 with width primarily set by
BEC size and the ramp rate of the pump. (e) Phase difference
between the BECs’ spots versus r2. Twenty data points are
plotted for each r2. (f) Calculation of the self-interaction J22
and cross-interaction J12 versus r2. Positive J22 (and J11)
ensures that cos krz is energetically favorable for both BECs
until the sign flip in J12 causes the second BEC to condense
into opposite pseudospin alignment with sgn{χc1χc2} = −1 .
See Fig. 3d for color disk scheme. Similar to Fig. 3, the phase
of the light at r1 is set to 0.

H12 locks the BECs’ DW patterns to each other, reduc-
ing the symmetry to a single Z2, as in the single BEC
case. J12 is positive in the region between r2 = 0 and
r2 ≈

√
2πw0/4, and so the two pseudospins align such

that sgn{χc1χc2} = +1. However, as the cross-term in-
teraction strength approaches 0 near r2 ≈

√
2πw0/4, the

relative phase between the DWs becomes uncorrelated
and randomly fluctuates between 0 and π, reflecting the
re-emergence of the Z2⊗Z2 symmetry. This can be seen
by comparing the plot of J12 in Fig. 4e with the data.
For larger r2’s, J12 changes sign, causing an antiferro-
magnetic alignment sgn{χc1χc2} = −1 and reduction
down to a single Z2 again. This is manifest in a π rel-
ative phase change between the light emitted from the
two BECs [50]. To track this interaction sign change, we
measure the field phase at each r2 and plot the phase
difference between the two sets of spots in Fig. 4e.

We have demonstrated that the nonlocal interaction
arising from Gouy phase anomalies in a confocal cavity
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offers a new tool to engineer cavity-mediated atom-atom
interactions. Freezing the atoms into position, e.g., with
an optical lattice, and coupling the atomic spins as in
Ref. [19], would allow Unonlocal to mediate sign-changing
spin-spin interactions of the form cos (2r · r′/w2

0). This
demonstration of sign-changing photon-mediated inter-
actions, in conjunction with our recent demonstrations
of spin-spin interactions [19] and tunable-range atom-
atom interactions [23]—all within the same experimen-
tal apparatus—open the door to creating artificial spin
glasses. With optical tweezers to place atoms in repro-
ducible configurations [51, 52], the exploration of replica
symmetry breaking might be possible [34]. While replica
symmetry breaking should be manifest in infinite-range
spin glasses, the microscopic state of short-range spin
glasses remains an outstanding question in statistical me-
chanics [35]. Moreover, placing atoms in specific loca-
tions to realize a particular graph of ±Jij connectivity
may provide a means for performing combinatorial opti-
mization and Hopfield associative memory [31, 53–55] in
a quantum-optical setting.
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