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We present a highly accurate, fully analytical model for the late inspiral, merger, and ringdown
of black-hole binaries with arbitrary mass ratios and spin vectors, and the associated gravitational
radiation, including the contributions of harmonics beyond the fundamental mode. This model
assumes only that nonlinear effects remain small throughout the entire coalescence, and is developed
based on a physical understanding of the dynamics of late stage binary evolution, in particular on
the tendency of the dynamical binary spacetime to behave like a linear perturbation of the stationary
merger-remnant spacetime, even at times before the merger has occurred. We demonstrate that our
model agrees with the most accurate numerical relativity results to within their own uncertainties
throughout the merger-ringdown phase, and it does so for example cases spanning the full range of
binary parameter space that is currently testable with numerical relativity. Furthermore, our model
maintains accuracy back to the innermost stable circular orbit of the merger-remnant spacetime over
much of the relevant parameter space, greatly decreasing the need to introduce phenomenological
degrees of freedom to describe the late inspiral.

Introduction.— Prior to the wide-ranging successes
of numerical relativity (NR) that began with technical
breakthroughs in 2005 [1–3] (see [4] for a recent review),
the challenge of calculating the gravitational-wave emis-
sion from a pair of merging black holes was seen primarily
as a problem on the boundary of nonlinear mathemat-
ics and computer science. The nonlinear nature of the
partial differential equations describing general relativ-
ity was expected to manifest itself when the theory was
pushed to describe the actual collision of black holes. The
subsequent discovery that the radiation from the merger
evolved very simply, smoothly connecting the amplitude
and phase of the inspiral to those of the ringdown across
all of the relevant parameter space, was a validation of
two complementary efforts predicated on the assumed
smallness of nonlinear effects throughout the entire coa-
lescence - the close-limit approximation [5] culminating
in the Lazarus project [6], and the effective one body
(EOB) approach [7, 8]. However, although the smooth-
ness of the merger has made it possible to create analyt-
ical models by extending post-Newtonian results to in-
clude free parameters, and tuning those to NR results (as
is done in both EOB and the inspiral-merger-ringdown
phenomenological (IMRPhenom) family of models [9]),
there is currently no accurate model of the merger that
is constructed analytically from first principles, rather
than through a fit to NR.

The phenomenological approach to modeling mergers
has achieved great success in estimating the parameters
of the black-hole binaries (BHBs) observed by the Ad-
vanced Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [10]. However, the LIGO-Virgo Collab-
oration found that a non-negligible subset of parame-
ter space would be limited by systematic modeling er-
rors even at current sensitivities [11]. Future upgrades

to Advanced LIGO, as well as space-based instruments
like LISA, will detect signals with substantially larger
signal-to-noise ratios [12], placing far more stringent re-
quirements on the systematic modeling errors that can be
tolerated. For more subtle measurements, such as tests
of general relativity, the most useful observations by far
will be the loudest; events with signal-to-noise ratios in
the thousands will require modeling errors hundreds of
times smaller than what has been required to date. Such
requirements may be beyond the current capabilities of
NR, let alone phenomenological models tuned to NR re-
sults.

We emphasize that, just as has been the case for all
BHB detections to date, the late inspiral and merger-
ringdown is expected to constitute the majority of the
signal-to-noise ratio for most expected sources for both
ground- and space-based observatories [12]. For concrete-
ness, we refer to the “merger-ringdown” as the part of the
waveform occurring at and after the time of peak ampli-
tude for the strain h, noting that the time of peak strain,
the time of peak amplitude for the Weyl scalar ψ4 (the
primary output of most NR codes, which is proportional
to ḧ), as well as the time of formation of a common ap-
parent horizon in NR simulations, all occur within a few
M of each other (i. e. of order the light crossing time
of the final black hole), where we will use geometrized
units where G = c = 1 throughout. We refer to the
“late inspiral” as the part of the waveform sourced by
the system after it reaches the innermost stable circular
orbit (ISCO) of the final merged black hole spacetime,
but before it reaches the light ring.

We will show that the spacetime of the final merged
remnant provides the most useful equivalent one-body
system for describing the post-ISCO dynamics. Since
the background spacetime on which we find a perturba-
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tive solution is the state that the system is known to
approach at later times, we refer to this approach as the
Backwards One Body (BOB) method. The BOB method
does not include any phenomenological degrees of free-
dom, yet it performs as well as the most accurate mod-
els that have been tuned to NR results; in fact, as we
will show, BOB agrees with NR results to within those
results’ own stated uncertainties throughout the entire
merger-ringdown, and maintains accuracy back to the
ISCO of the equivalent single black-hole system over a
large portion of parameter space. The high degree of
fidelity of this model strongly suggests that the descrip-
tion of the binary that motivates the model is providing
a physically meaningful description of the late stage dy-
namics of merging BHBs.

Physical description of mergers.— It has previously
been noted [13] that, within the eikonal approximation
where `>− |m| � 1, with ` and m being the harmonic
indices, the gravitational-wave emission of a single per-
turbed black hole is well described by the properties of
null geodesics on unstable circular orbits at the black
hole’s light ring. These quasi-normal modes (QNMs)
should describe the end state of a BHB merger, so that
the emission at late times must in some way relate to the
dynamics of null rays at the light ring. However, it has
also been argued that the peak in the gravitational-wave
amplitude corresponds, in the EOB description, to the
perturber crossing the light ring of the effective single
black-hole spacetime [8], so that the emission at the mo-
ment of merger should also correspond in some way to
the dynamics of null rays at the light ring. This begs an
obvious question: how can the merger waveform, as well
as the waveform at a time well after the merger, both
correspond to disturbances at the light ring?

To understand this dichotomy, we interpret the se-
quence of events in the following way. First, we consider
an effective single-black hole spacetime with an inspiral-
ing perturber. As the perturber approaches the light ring
of the black hole, most of the gravitational-wave emis-
sion that will reach a distant observer is actually being
reflected by the curvature potential of the black hole,
rather than arriving directly from the perturber [8, 14–
17]. This emission will occur at harmonics of the per-
turber’s instantaneous orbital frequency, and will spiral
outward along the outgoing geodesic path for escaping
null particles with the same angular momentum as the
perturber. Because radiation reaction has a negligible ef-
fect on the dynamics inside ISCO [8, 18], the point par-
ticle follows a timelike geodesic path. As the perturber
passes beyond the light ring, most of the radiation that it
sources directly falls into the black hole; however, a range
of spacetime disturbances with higher frequencies is also
generated at the light ring, either by the passage of the
perturber or through a nonlinear response to the emis-
sion at lower frequencies. These higher frequencies span
from the perturber’s frequency up to the null circular or-

bital frequency at the light ring, with gravitational-wave
emission being sourced at multiples of these frequencies.
Higher frequency null rays spend more time orbiting the
system, in addition to any potential intrinsic delay in
generating higher frequency emission, so that higher fre-
quency gravitational waves will reach distant observers
at later times, in direct analogy to the behavior of light
escaping a collapsing star [19]. The frequency of orbit-
ing perturbations asymptotes to the null circular orbit
frequency, since those perturbations orbit the black hole
indefinitely. In the Supplemental Material [20], we in-
clude an illustration to further clarify our description of
the merger dynamics.
Merger amplitude.— The frequencies of the QNMs

of a single perturbed black hole closely match the cor-
responding harmonics of the orbital frequency for a null
geodesic circling the light ring, and the decay rate of the
amplitude corresponds to the Lyapunov coefficient char-
acterizing the rate of divergence of nearby null geodesics
[21]. This correspondence is well motivated in the geo-
metric optics limit where `>−m � 1, but provides ac-
curate predictions even for small ` and m. The QNM
family of exponentially decaying sinusoids can therefore
be found by calculating the behavior at late times of a
bundle of null geodesics, known as a null congruence,
that has diverged from the light ring [22]. However, if we
trace the behavior of the congruence back to the point
where the bundle converges, which one would expect to
be associated with the peak waveform amplitude, then
we can predict the behavior of the amplitude at earlier
times.

To accomplish this, we follow a similar approach to
[21], in that we consider a set of geodesics perturbed
away from light ring orbits, except that we consider per-
turbations in all directions, whereas past authors have
focused on perturbations within the equatorial plane. In
other words, for geodesics described by the set of coordi-
nates {t, r, θ, φ}, we express their evolution at leading
order by

t = tp + η + εh(t− tp) ,

r = rlr[1 + εf(t− tp)] ,

θ =
π

2
[1 + εp(t− tp)] ,

φ = ω[t+ εg(t− tp)] , (1)

where tp is the time when the congruence converges,
corresponding to the peak waveform amplitude, η is
an affine parameter, ε is a small dimensionless order-
counting parameter, rlr is the light ring radius, ω is
the orbital frequency of the geodesic, and f, g, h, and
p are functions determined from the requirements that
the perturbed orbits are still null geodesics, and that
f(0) = g(0) = h(0) = p(0) = 0. We note that in [21], θ
is held fixed at π/2 while the other coordinates are per-
turbed. This difference is minor when considering QNMs,
and amounts to a different convention for the Lyapunov
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coefficient, but when considering the evolution of the am-
plitude at times as early as the peak, this difference is
more significant. The resulting perturbation functions
are given by

f = sinh[γ(t− tp)] ,

g = 0 ,

h = 2
ω

γ2

√
3M

rlr
{1− cosh[γ(t− tp)]} ,

p = 0 , (2)

where γ is the Lyapunov exponent of the congruence, and
corresponds in the wave picture to the inverse damping
time of the amplitude. In particular, note that to leading
order in ε, we find perturbed geodesics do not evolve
in the θ direction. This result might at first appear to
validate fixing θ = π/2 as in [21], since we arrive at the
same result for the differential cross-sectional area of the
congruence, namely that

dA = dA0 cosh[γ(t− tp)] = πrlrdrdθ . (3)

However, this result is potentially misleading, as the
expansion only occurs along the radial direction, and
not in the polar direction, so dθ is constant, and only
dr ∝ cosh[γ(t − tp)] evolves with time. Since dr/dη =
dr/dt + O(ε2), there is no need to distinguish between
time and the affine parameter at leading order, and we
only need to focus on the behavior of r in Eq. 1 to deter-
mine the behavior of the waveform amplitude.

The dimensionality of the expanding null congruence,
and its relationship to the wave amplitude within the ge-
ometric optics approximation, is therefore modified rela-
tive to the case of expansion in empty space. In partic-
ular, the transport equation relating the cross-sectional
area and the waveform amplitude, A, becomes

kµ∂µ(drA) = 0 ,

∴ A = Ap sech[γ(t− tp)] . (4)

We note that this conclusion differs from previous treat-
ments of QNMs in the geometric optics limit (e. g. [22])
that applied the result for expansion in empty space,
kµ∂µ(dA1/2A) = 0 [23], which is not valid for these or-
bits, and would lead one to conclude in our case that
A = Ap sech1/2[γ(t − tp)], rather than the correct result
given in Eq. 4. This discrepancy highlights an important-
but-subtle distinction, that although the actual radia-
tion in the far-field should of course propagate as if it
were in empty space, the duality between QNMs and
null light-ring orbits is a feature of the Kerr solution in
the near-zone (i. e. it is a feature of the source, not the
emission), and therefore the correct strong-field effects
on wave propagation should be taken into account.

The amplitude A could, in principle, describe any
derivative or integral of the gravitational-wave strain.
However, given our goal of developing a model that can

be extended to times before the peak (and ideally back
to the ISCO), we next considered which derivative of
strain would have an amplitude best described by Eq. 4
at t < tp. We will present the full details of the cal-
culation in followup work, but in summary, we solved
an approximation to the sourceless Zerilli equation [24]
that describes the scattering of gravitational perturba-
tions by a black hole to first order in the black hole spin.
Previous work has shown that just prior to merger, the
dominant contribution to the gravitational-wave emis-
sion comes from gravitational perturbations scattering off
of the curvature potential, rather than arriving directly
from the effective perturber [8, 14–17], so that the Zerilli
equation can be used to describe the emission during this
time. We replaced the exact curvature potential that ap-
pears in [24] with a negated Poschl-Teller potential [25],
an approximation that has been used successfully to find
analytical solutions for the QNM frequencies for nonspin-
ning and slowly spinning systems [21], and found that

|ψ4| = Ap sech[γ(t− tp)] (5)

satisfies Eq. 4 for t < tp to O[(t − tp)4], better than
any other strain derivative. Since |h| ≈ |ψ4|/ω2 for qua-
sicircular systems, we can also combine Eq. 5 with an
analytical model for ω to define an analytic model for
the strain amplitude.

We note that although our results from this section
formally only hold for ` = |m| modes, a numerical study
of geodesic deviation for non-equatorial (i. e. ` > |m|)
modes suggests that radial expansion dominates polar
expansion in all cases. Nonetheless, the NR data is gen-
erally of poor quality for these modes, and is known to
suffer from mode mixing [26], so in the Supplemental Ma-
terial [20], we show the agreement of the model with the
loudest non-mixed mode with ` > |m| (specifically, ` = 2,
|m| = 1), but leave a more detailed study for future in-
vestigation.
Phase evolution.— With a model for the amplitude

of ψ4 in hand, we can now turn to modeling the phase of
ψ4, and recovering the strain from these quantities. To
this end, we follow a similar approach to that employed
by the author and collaborators in [27], where a phe-
nomenological model for the frequency was developed,
and a relationship between amplitude and frequency was
derived to complete the model. We instead have devel-
oped a first-principles model for the amplitude, but we
can apply the same relationship as in [27] to calculate the
frequency (and subsequently the phase) from the ampli-
tude.

Specifically, we can relate the amplitude and frequency
of the news, N`m = ḣ`m, using

|N`m|2 = 16πξ`mΩ`mΩ̇`m = 8πξ`m
d

dt
(Ω2

`m) , (6)

where ξ`m ≡ m2 dJ`m
dΩ`m

was shown in [27] to remain con-
stant throughout the late inspiral and merger-ringdown,
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and indeed would be expected to trend to a constant
due to the exponential asymptotic approach of both J`m
and Ω`m to their final constant values, with the e-folding
timescale of both set by the final black hole damping
time. Ω`m represents the orbital frequency, first of the
perturber, and subsequently of the inferred spacetime
perturbations orbiting near the light ring and continu-
ing to source gravitational-wave emission. We note that
the different Ω`m’s should be equal when sourced by a
single perturber, but can differ from each other once the
emission decouples from a single source. We will drop
the subscripts in what follows for notational simplicity
and lack of ambiguity, but before doing so, we emphasize
that at no point do we enforce equality of the different
Ω`m’s. Indeed, we find that the different Ω`m curves for
the ` = |m| modes are quite similar and their amplitudes
peak at nearly identical times, whereas for the ` > |m|
modes, Ω`m begins to notably differ through the merger,
and the amplitude peaks at different times, consistent
with previous studies [27].

Since |ψ4|2 = d
dt |N |

2 + m2Ω2|N |2 ≈ m2Ω2|N |2 due
again to quasicircularity, we can insert Eq. 5 into Eq. 6,
separate the Ω and t variables, and integrate to find

Ω =

[
Ω4

0 + k

(
tanh

(
t− tp
τ

)
− tanh

(
t0 − tp
τ

))]1/4

,

(7)
where the constant k is given by

k =

(
Ω4

QNM − Ω4
0

1− tanh [(t0 − tp)/τ ]

)
, (8)

where τ = γ−1 is the damping time, and ΩQNM =
ωQNM/m is the inferred asymptotic orbital frequency of
light ring perturbations sourcing QNMs with frequency
ωQNM. We note that only relative time shifts are phys-
ically meaningful, so that either tp or t0 can be freely
chosen. The parameters tp − t0, Ap, and Ω0 can be set
by enforcing continuity with the inspiral of the ampli-
tude, frequency, and either of their derivatives. Since
phase agreement is generally more important, we opt to

enforce continuity in Ω̇ = k
4τΩ3 sech2

(
t−tp
τ

)
, so that

t0 = tp −
τ

2
ln

(
Ω4

QNM − Ω4
0

2τΩ3
0Ω̇0

− 1

)
, (9)

where Ω0 and Ω̇0 are the orbital frequency and frequency
derivative at the transition from inspiral. We can addi-
tionally relate the amplitude at the transition point to the
amplitude at the peak using A0 ≡ Ap sech((t0 − tp)/τ).
We note that we could alternatively eliminate t0 as a pa-
rameter altogether in favor of fixing Ω(t → −∞) to a
particular value, with 0 or ΩISCO being physically moti-
vated choices; we will explore these possibilities further
in future work.

Finally, we integrate Eq. 7 to find the phase,

Φ =

∫ t

0

Ω dt′ = arctan+ + arctanh+− arctan−− arctanh− ,

arctan[h]+− ≡ κ+− τ

arctan[h]

 Ω

κ+−

− arctan[h]

 Ω0

κ+−

 ,
κ+− ≡

[
Ω4

0
+− k

(
1−+ tanh

(
t0 − tp
τ

))]1/4

. (10)

Since Eqs. 7 and 10 represent the rotation of the source,
the frequency and phase are simply given as ω`m = mΩ
and φ`m = mΦ, respectively.
Results.— To complete our first-principles model

based on the final state of the system, we require a
method for predicting the final mass and spin of the
merger remnant based on the initial conditions of the sys-
tem. A considerable amount of work has been done on
generating fitting formulae to suites of NR simulations,
so those fits could be used for this purpose. However,
in the interest of generating a waveform that does not
rely on NR results in any way, we can instead apply the
first-principles approach used in [28], but supplemented
to include the change in mass due to the loss of binding
energy through gravitational radiation [29]. We include
full details of this model and a comparison to a numeri-
cal relativity-based fit [30] in the Supplemental Material
[20].

We show the result of this approach in Fig. 1, where
we attached our fully NR-independent BOB model to an
EOB inspiral that follows the methodology referenced in
[31], and is not calibrated to NR results. We aligned the
data at the time of peak strain amplitude, tp,h, so we note
that tp,h ≈ tp + 10M for this case. The attachment was
done by first enforcing agreement with the EOB ampli-
tude, frequency, and frequency derivative at a time 5M
after it reaches the ISCO frequency. In principle, this
alignment could be done anywhere between ISCO and
the light ring; however, since we want to minimize our
reliance on EOB inside the ISCO, but our physical model
suggests that Ω should asymptote to a value compara-
ble to the ISCO value at early times, we choose a time
just after the ISCO crossing to enforce continuity. We
then smoothly transition between the two models using
a raised cosine over a time window of width 5M start-
ing at t − tp = −20M , which was chosen so that the
transition to BOB would begin when the EOB inspiral
reaches the ISCO frequency of the merged remnant. We
compare this result to various past waveform predictions,
and show that BOB is not only a dramatic improvement
over historic alternatives to full NR, but it actually agrees
with the state-of-the-art in NR, as represented by the
latest Simulating eXtreme Spacetimes (SXS) result, to
within our estimate of SXS’s own uncertainties. In the
Supplemental Material [20], we show additional compar-
isons between the BOB model and a set of NR waveforms
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that span the full range of physical parameter space avail-
able from the SXS catalog of waveforms [33], which show
that the outstanding agreement between BOB and NR
extends across the full parameter space.

This work is partially supported by the National Sci-
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FIG. 1: Historical comparison of waveform predictions
for the dominant ` = m = 2 mode of strain for an
equal mass, nonspinning merger, including the Lazarus
project [6] ((green) dotted line), uncalibrated EOB
attached to a ringdown [31] ((red) dash-dotted line),
the first stable evolution of a binary merger in numer-
ical relativity by Pretorius [1] ((magenta) solid line),
and simulations by the SXS collaboration [32]. We
note that the times and extraction distances for all the
waveforms are rescaled by their own estimates of the
final mass, and that the waveforms from [1] and [31]
have small nonzero initial spins. We estimated an un-
certainty interval for the SXS waveform (SXS:BBH0001
from the online waveform catalog [33]) ((cyan) shaded
region) by combining (in quadrature) numerical error
derived from the multiple available resolutions, extrap-
olation error derived from the many available extrac-
tion radii, and systematics from residual eccentricity
as estimated from a second available SXS simulation
(SXS:BBH0002) that used different initial data. When
we transition from the same uncalibrated EOB inspiral
to the BOB model 5M after it reaches twice the ISCO
orbital frequency of the merged remnant, so that we are
replacing most of the EOB extrapolation to the light
ring and subsequent ringdown attachment with BOB
((black) dashed line), the resulting waveform agrees
with SXS to within SXS’s uncertainties throughout the
merger-ringdown and backwards in time beyond the
ISCO. For reference, we also show the times (top) and
frequencies (bottom) corresponding to the SXS wave-
form crossing twice the ISCO frequency and twice the
light ring (LR) frequency of the infalling perturber, as
well as the frequency (bottom) for crossing twice the
circular light ring frequency (LR, null). All waveforms
are aligned at the time of peak strain amplitude, tp,h.
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