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Quantum State Tomography is the task of inferring the state of a quantum system from measurement data.
A reliable tomography scheme should not only report an estimate for that state, but also well-justified error
bars. These may be specified in terms of confidence regions, i.e., subsets of the state space which contain
the system’s state with high probability. Here, building upon a quantum generalisation of Clopper-Pearson
confidence intervals — a notion known from classical statistics — we present a simple and reliable scheme for
generating confidence regions. These have the shape of a polytope and can be computed efficiently. We provide
several examples to demonstrate the practical usability of the scheme in experiments.

Quantum State Tomography (QST) may be regarded as the
quantum variant of statistical estimation theory. Given data
obtained from measuring a quantum system, the goal is to esti-
mate the system’s state. QST has become an increasingly im-
portant tool in experimental physics, especially in the area of
quantum information technology. Accordingly, a lot of work
has been put into the development of techniques to increase
its efficiency. Among them are methods to reduce the number
of different measurements needed and to keep the (generally
unfavourable) scaling of the amount of required data in the
dimension of the system under control [1–9].

Nonetheless, only relatively little attention has been paid to
the problem of statistical errors in QST. Statistical errors are
due to unavoidable fluctuations, resulting from the fact that
the collected data always represents a finite sample. In other
words, they are those errors that remain even if the experiment
is implemented perfectly and shielded from any environmen-
tal noise.

In experimental sciences, statistical errors are generally re-
ported in terms of error bars, which are obtained by stan-
dard methods from classical statistics. In the context of quan-
tum information, techniques to determine error estimates have
been developed for specific tasks, such as entanglement ver-
ification and quantum metrology [10–16]. These are how-
ever not universal enough to be applicable to QST. In fact,
an agreed-upon scheme for reporting the accuracy of esti-
mates in QST does not seem to exist. Experimental re-
sults in QST are therefore often stated without error bars, or
with error bars that do not have a well-defined operational
meaning. A widespread approach is to use point estimators
for the system’s state, such as Maximum Likelihood Estima-
tion (MLE) [17, 18] (for examples, see [19–22]), and take
the width of the likelihood function as a measure for their
accuracy [23]. Another common, heuristic, method to de-
termine the accuracy is numerical bootstrapping, or resam-
pling [24, 25]. The resulting error bars then correspond to the
variance of the point estimators. But since these are generally
highly biased, they do not correctly reflect the uncertainty in
the state estimate (see [26] for a discussion). A notable excep-
tion is [27], where a point estimator has been proposed whose
distance to the true state is provably below a given bound with
high probability.

The problems described above can be avoided with meth-
ods that, rather than giving point estimates, yield regions in
state space. The idea is that these regions contain, with high

probability, the (unknown) state, ρ, i.e., the state in which the
system was prepared. Depending on what is meant by “high
probability”, one talks about credibility regions or confidence
regions.

Credibility regions are motivated by the Bayesian approach
to probability theory, where probabilities are interpreted as
measures for personal belief or knowledge [28–31]. To use
this approach in QST, it is necessary to specify a prior, i.e.,
a probability distribution over the possible states ρ, that re-
flects one’s personal belief before considering the measure-
ment data. The corresponding credibility region obtained
from QST then has the property that it contains ρ with high
probability according to the posterior belief, i.e., the updated
belief one would have after taking into account the measure-
ment data. The reported credibility region thus has a well-
defined operational meaning — but only for those who agree
with the prior. Unfortunately, there is no unique natural choice
for the latter; even when demanding certain symmetries, the
class of possible priors is usually infinitely large.

Confidence regions avoid this prior-dependence. While
they are generally larger than the credibility regions of the
Bayesian approach, they contain the unknown state ρ with
high probability — independently of what the prior was. Cur-
rently, there exist two approaches to obtain confidence re-
gions. One of them, due to Blume-Kohout and Glancy et al.,
uses a construction based on the computation of likelihood ra-
tios [26, 32]. Although supported by heuristic arguments, it
has however, to the best of our knowledge, not been estab-
lished rigorously that the constructed regions are valid con-
fidence regions. In the other approach, due to Christandl &
Renner [33, 34], confidence regions are constructed by ex-
tending credibility regions for a particular symmetric prior.
While the validity of these regions has been proved rigorously,
their size is far from optimal (see the discussion below).

In this Letter, we propose an alternative method to deter-
mine confidence regions in QST. It is based upon a generali-
sation of a notion from classical statistics, known as Clopper-
Pearson confidence intervals [35]. Given data from any infor-
mationally complete measurement, the corresponding confi-
dence regions have the shape of a polytope (see FIG. 1), with
facets that can be computed efficiently. As we shall demon-
strate, this simple structure can also be exploited to optimise
the choice of tomographic measurements for more accuracy.

In classical estimation theory, one of the most basic prob-
lems is to determine the bias P of a biased coin from a given
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FIG. 1: Confidence polytopes for QST on a qubit. The
plots show confidence polytopes with confidence level 0.999,
obtained from data of simulated measurements on a single
qubit. The polytopes lie within the Bloch sphere, which
represents the entire state space of the qubit. In (a), the
measurement is defined by six Pauli projectors, along the X ,
Y , and Z directions, and the polytope is a rectangular box
whose normal directions are given by the three Pauli
operators. In (b), the measurement operators are chosen such
that they form a Symmetrical Informationally Complete
(SIC) POVM [36, 37]. In this case, the resulting confidence
polytope is the intersection of two tetrahedrons whose
normals are given by the measurement directions.

sample of tosses. The Clopper-Pearson interval solves this
problem “exactly”, i.e., without involving approximations. In
particular, the interval represents a reliable confidence region
for P , even in extreme cases, e.g., when P ≈ 0 or P ≈ 1,
in which other schemes may fail. This feature turns out to be
crucial for QST, where the measurement statistics often con-
tains such extreme cases, especially when the unknown state
is close to the boundary of the state space.

In QST, one usually considers the following scenario
(see [33] for a more general treatment, which does not assume
identically repeated preparations). A d-dimensional quantum
system is repeatedly prepared in the same unknown state ρ,
i.e., an element of the set S(Hd) of density operators on a
d-dimensional Hilbert space. After each preparation, a mea-
surement, described by a positive operator valued measure
(POVM) on Hd with elements Ei, for i = 1, . . . , k, is ap-
plied. In the common case of projective measurements, these
elements are just the projectors belonging to the different pos-
sible measurement outcomes i. The results presented here are
however valid for arbitrary (not necessarily projective) POVM
elements Ei, which is useful, for instance, to model noisy
measurements [37]. After n preparation-and-measurement
rounds, the data can be brought into the form of a k-tuple
n := (n1, . . . , nk), where ni denotes the number of occur-
rences of an outcome corresponding to Ei.

We are interested in constructing a QST procedure that
computes, from the measurement outcome n, a confidence re-
gion, denoted by Γ(n), for any desired confidence level 1− ε,
where ε > 0. This means that, except with probability ε, the
unknown state ρ is contained in Γ(n), i.e.,

Pr[ρ ∈ Γ(n)] ≥ 1− ε .

Crucially, this bound is supposed to hold for any arbitrary ρ

(which would not be the case for a credibility region, where
ρ must be sampled from a given prior), whereas Pr[·] should
be understood as the probability taken over all possible out-
comes n [38].

We break down the problem of constructing confidence
regions into determining a confidence half-space for each
POVM element Ei, depending on the measured frequency ni

n
of the corresponding outcome. The intersection of all such
half-spaces, for all the measurement POVM elements, then
forms a confidence region, as asserted by the following theo-
rem. For its formulation, we use the binary relative entropy,
which is defined as D(x‖y) = x log(xy ) + (1− x) log(1−x

1−y ).
We also introduce a function δn(m, ν) that returns the positive
root δ of D(mn ‖

m
n + δ) = − 1

n log(ν).

Theorem 1. Consider a QST setup as described above, with
unknown state ρ ∈ S(Hd) and measurements defined by a
k-elements POVM {Ei}. Let 1− ε be the desired confidence
level. For any possible measurement data n = (n1, . . . , nk)
and for any i, define

Γi(ni) =
{
σ ∈ S(Hd) : tr(Eiσ) ≤ ni

n
+ δn(ni,

ε

k
)
}
.

Then their intersection Γ(n) :=
⋂
i Γi(ni) is a confidence

region with confidence level 1− ε.

Proof. The proof consists of two steps. We first show that
the conditions for the confidence region can be reduced to
the Clopper-Pearson construction. We then use known results
about this construction to conclude the argument [39].

Given a family λ = {λα} of d2 − 1 generalised Pauli ma-
trices satisfying the orthogonality relation trλαλβ = 2δαβ ,
we can embed the space S(Hd) of density operators ρ into the
Euclidean space Rd2−1 of vectors r via the relation [42]

ρ =
1

d
(1 +

√
d(d− 1)

2
r · λ) .

The Euclidean metric on Rd2−1 then corresponds to the
Hilbert-Schmidt metric for S(Hd) [43]. Similarly, we can
represent each POVM element Ei by a vector ηi in Rd2−1,
i.e.,

Ei =
1

mi
(1 +

√
d(d− 1)

2
ηi · λ) ,

with mi such that
∑
i

1
mi

= 1. Theorem 1 may now be
rephrased in terms of these representations in Rd2−1.

Corollary 1. Consider a QST setup as in Theorem 1, with
an unknown state ρ parametrised by r ∈ Rd2−1 and POVM
{Ei} parametrised by ηi ∈ Rd2−1. Then the intersection of
the embedding of the state space S(Hd) in Rd2−1 with the
half-spaces of all r that satisfy

1 + (d− 1)r · ηi ≤ mi(
ni
n

+ δn(ni,
ε

k
)) (1)

represents a confidence region with confidence level 1− ε.
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The results above may be generalised by replacing the ar-
gument ε

k to δn by any partition εi of unity [39]. One may
then optimise εi for the tightest confidence region. However,
even without this optimisation (which may be hard to carry
out), the confidence region is rather tight, as discussed below.

If the measurement POVM is informationally complete, the
inequalities (1) define the facets of a polytope, the confidence
polytope. From this polytope one can estimate any desired
figure of merit (such as the fidelity to a reference state; see
Table I for other examples) and obtain error bars for it. The
latter are given in terms of (1−ε)-confidence intervals, which
one can obtain via the following procedure.

• Choose a convenient basis λ, e.g. the basis correspond-
ing to the measurement axis, and compute the represen-
tation ηi,mi for all k elements Ei of the POVM.

• Compute δn(ni,
ε
k ) for any of the k measurement out-

comes i and collect the corresponding inequalities (1).

• Sample states from the polytope defined by the k in-
equalities and compute the figure of merit for each of
them [44].

• The confidence interval is approximated by the max-
imum and minimum of the figure of merit among all
sampled states.

For illustration we provide examples of simple QST sce-
narios. The first is QST on a single qubit, where the state
space is three-dimensional, so that the confidence polytopes
can be depicted easily (FIG. 1). We also demonstrate QST on
a noisy Bell state with simulated measurement data (Table I )
and on s-qubit GHZ states [45] for s = 2, 3, 4 with data from
IBM’s Q Experience [46, 47] (Table II). For all our examples
we chose a confidence level defined by ε = 0.001.

Reference Fidelity Trace distance Negativity
MLE state > 0.973 < 0.0902

(0.393, 0.459)
Perfect Bell state Φ+ (0.944, 0.980) (0.0546, 0.133)

TABLE I: QST of simulated noisy Bell state. A confidence
polytope with confidence level 0.999 was generated for data
from simulated SIC POVM measurements on 104 copies of a
noisy Bell state ρ = 0.9Φ+ + 0.11

4 . The table shows the
confidence intervals, which are derived from the confidence
polytope, for various figures of merit, such as the fidelity to
and the distance from particular reference states (MLE
denotes the state obtained by Maximum Likelihood
Estimation), or the negativity, which is a measure for
entanglement [48].

The shape of the confidence polytopes provides informa-
tion about the distribution of the statistical errors. This, in
turn, enables the choice of particular additional measurements
to improve the precision of QST. We demonstrate this with
QST on a single qubit. (Its low dimensionality allows us to
illustrate the idea by intuitive plots in the Bloch sphere pic-
ture — but a generalisation to higher-dimensional spaces is

data size n Fidelity Trace distance Negativity
GHZ2 9× 1024 (0.903, 0.940) (0.131, 0.208) (0.318, 0.386)

GHZ3 27× 1024 (0.837, 0.869) (0.313, 0.371) /
GHZ4 81× 1024 (0.944, 0.980) (0.0546, 0.133) /

TABLE II: QST of GHZ states on IBM’s Q Experience.
GHZ states of 2, 3, and 4 qubits were prepared on IBM’s
5-qubit device “ibmqx2” and then measured with respect to
the Pauli basis on each qubit. The sample size is given by the
number of different measurement directions times the shot
count (each measurement is repeated 1024 times). The third
and fourth column show the deviation from perfect GHZ
states. The confidence level is set at 0.999.

straightforward.) We start with a biased informationally com-
plete POVM, which may be regarded as a skewed version of a
SIC POVM (see FIG. 2(a)). The polytope obtained after 5000
measurements is much more extended in the X and the Y
direction than in the Z direction (FIG. 2(b)). Therefore, 1000
extra measurements along both theX and the Y direction help
to “refine” the polytope, yielding a smaller confidence region
(FIG. 2(c)).

In higher dimensions, extracting the relevant geometrical
information can be computationally expensive. One may how-
ever simplify this task by considering a bounding box in the
representation space Rd2−1, defined as the minimum enclos-
ing hyper-rectangle with faces perpendicular to the axes given
by the basis λ. Ideally, this basis should be chosen such that
it contains experimentally accessible observables (e.g., tensor
powers of Pauli matrices). Since the orientation of the bound-
ing box is fixed by the basis, the corners of the box can be
determined via simple linear programs. If a particular edge
of the bounding box is long, it implies that the confidence
polytope is more extended in that direction, and further mea-
surements along the corresponding axis would be effective in
reducing its size.

Confidence regions have the advantage over Bayesian cred-
ible regions that they do not rely on any prior knowledge.
Conversely, credibility regions are generally smaller than
confidence regions, thus giving tighter state estimates [49].
Clearly, if the prior is already highly peaked around the actual
(unknown) state of the system, the credibility regions obtained
by QST can be arbitrarily small. However, numerical results
indicate that, in the case of relatively flat priors, the resulting
credibility regions are comparable in size to the confidence
polytopes introduced here.

Specifically, we take priors defined by the Hilbert-Schmidt
measure dρ [50]. A region Γ(n) of the state space has credi-
bility 1− εb with respect to this prior if the condition∫

Γ(n)

µn(ρ)dρ ≥ 1− εb (2)

holds, where µn is the posterior conditioned on the collected
data n [51]. For our comparison, we take Γ(n) to be a (1− ε)-
confidence polytope as in Theorem 1 and determine its cred-
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FIG. 2: Optimising the information content of measurements. The red dots in (a) represent the elements of a skewed SIC
POVM, which has more distinguishing power in the Z direction than in the X and Y directions. (b) shows the confidence
polytope that is obtained from 5000 measurements defined by this POVM. (c) depicts the effect of 1000 additional projective
measurements in both the X and the Y direction. The red planes represent the new facets introduced by the extra
measurements.
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FIG. 3: Confidence vs. credibility regions. The plots show
the ratio ε/εb between the confidence and credibility levels
of a polytope constructed according to the prescription of
Theorem 1, interpreted as a confidence region and as a
credibility region, respectively. Each dot was obtained by
QST on n copies of a simulated state chosen at random from
a d-dimensional state space, evaluated with [52]. Although
there are fluctuations due to the different choices of states
and measurement outcomes, no scaling in the data size n or
the dimension d is observed.

ibility level εb by (2). We then plot the ratio ε/εb for ran-
domly chosen states. As shown in FIG. 3, the numerics in-
dicate that this ratio does not scale with the dimension of the
measured quantum system nor with the data size. Confidence
polytopes therefore provide rather tight estimates for the un-
known state. In particular, they outperform the earlier con-
struction proposed by Christandl & Renner [33]. In the lat-
ter, (1− ε)-confidence regions are obtained from particular
(1− εb)-credibility regions, but ε is larger than εb by a factor
polynomial in the dimension of the measured system [51].

The method we presented here is based on Clopper-Pearson
confidence intervals. In classical statistics, there exist several
alternative methods to determine confidence intervals, many
of which rely however on approximations [53–58]. Some of
these methods yield confidence intervals that are smaller than

Clopper-Pearson intervals and thus seem to have more predic-
tion power [56, 58]. Conversely, Clopper-Pearson confidence
intervals are a safe choice, in the sense that they never result
in an overestimation of the confidence level. Furthermore, for
sample sizes n of the order 105, which is common in QST, the
actual coverage probability of the Clopper-Pearson intervals
is very close to the claimed confidence level [56].

Confidence polytopes as proposed here may also be com-
bined with methods for dimension-scalable QST. These are
based on additional assumptions about the unknown state,
e.g., that it has bounded rank [59], that it is permutation-
invariant [6], or that it has a matrix product state (MPS) struc-
ture [1]. These assumptions generally restrict the relevant
state space. Accordingly, it is sufficient to construct confi-
dence polytopes within this restricted space.

As shown above, rather than reporting the full confidence
polytope as the outcome of a QST experiment, it is often
sensible to characterise it with one (or a few) parameters.
One could treat the state obtained from any point estimation
scheme, such as MLE or Constrained Least Square, as a refer-
ence and report its maximum distance to the polytope bound-
ary as the error bar. In this sense, our methods, rather than
replacing current state estimation schemes, endow them with
error bars that characterise the statistical (un)certainty of the
estimates.
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State Estimation, edited by M. Paris and J. Řeháček (2004), pp.
59.

[19] C. F. Roos, G. P. T. Lancaster, M. Riebe, H. Häffner, W. Hänsel,
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