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As a function of connectivity, spring networks exhibit a critical transition between floppy and rigid phases at
an isostatic threshold. For connectivity below this threshold, fiber networks were recently shown theoretically
to exhibit a rigidity transition with corresponding critical signatures as a function of strain. Experimental col-
lagen networks were also shown to be consistent with these predictions. We develop a scaling theory for this
strain-controlled transition. Using a real-space renormalization approach, we determine relations between the
critical exponents governing the transition, which we verify for the strain-controlled transition using numerical
simulations of both triangular lattice-based and packing-derived fiber networks.

It has long been recognized that varying connectivity can
lead to a rigidity transition in networks such as those formed
by springlike, central force (CF) connections between nodes.
Maxwell introduced a counting argument for the onset of
rigidity for such systems in d dimensions with N nodes, in
which the number of degrees of freedom dN is balanced by
the number of constraints Nz/2, where z is the average co-
ordination number of the network [1]. The transition at this
isostatic point of marginal stability has been shown to ex-
hibit signatures of criticality. Such a balance of constraints
and degrees of freedom is important for understanding rigid-
ity percolation and jamming [2–6]. Even in networks with
additional interactions that lead to stability below the CF iso-
static point, the mechanical response can still exhibit strong
signatures of criticality in the vicinity of the CF isostatic point
[7–10]. More recently, criticality has been shown in fiber net-
works as a function of strain for systems well below the iso-
static point [11].

While both jammed particle packings and fiber networks
exhibit athermal (T = 0) mechanical phase transitions and
superficially similar critical behavior, these systems have
strong qualitative differences. In particular, there is grow-
ing evidence that the jamming transition is mean-field [6, 12].
Goodrich et al. recently proposed a scaling theory and per-
formed numerical simulations of jamming which both demon-
strate mean-field exponents and support the conclusion that
the upper critical dimension du = 2 for the jamming transition
[12]. In contrast, fiber networks to date have shown distinctly
non-mean-field behavior [8–11]. Although many aspects of
the critical behavior of fiber networks, including various criti-
cal exponents, have been quantified, prior studies have been
limited to to simulations and the development of effective
medium theories. Importantly, a theory has been lacking to
identify critical exponents or even scaling relations among ex-
ponents, in order to understand the observed non-mean-field
character of the stiffening transition in fiber networks. Here,
we develop a scaling theory for both the sub-isostatic, strain
controlled transition, as well as the transition in z near the iso-
static point for athermal fiber networks. We derive scaling
relations among the various exponents and demonstrate good
agreement with numerical simulations. Interestingly, our re-

sults imply that the upper critical dimension for fiber networks
is du > 2, in contrast with jamming packings.

Near the isostatic point with average coordination number
z = zc = 2d, spring networks exhibit linear shear moduli G
that vary as a power of |z − zc| for z > zc [6, 7, 13]. In the
floppy or sub-isostatic regime with z < zc, such systems can
be stabilized by introducing additional interactions [7, 8] or
by imposing stress or strain [14, 15]. It was recently shown
that sub-isostatic networks undergo a transition from floppy
to rigid as a function of shear strain γ [11, 16]. Moreover, this
fundamentally nonlinear transition was identified as a line of
critical points characterized by a z−dependent threshold γc(z),
as sketched in Fig. 1a. Above this strain threshold, the differ-
ential or tangent shear modulus K = dσ/dγ scales as a power
law in strain, with K ∼ |γ − γc|

f . Introducing bending inter-
actions with rigidity κ between nearest neighbor bonds stabi-
lizes sub-isostatic networks below the critical strain, leading
to K ∼ κ for γ < γc. Both of these regimes are captured by the
scaling form [17]

K ≈ |γ − γc|
f G±

(
κ/|γ − γc|

φ
)

(1)

FIG. 1. (a) Schematic phase diagram depicting the state of mechan-
ical rigidity of a central force network as a function of coordination
number z and applied shear strain γ. The arrow A depicts the strain-
controlled transition and B depicts the transition at the isostatic point.
With the addition of bending interactions, the floppy region becomes
instead bending-dominated, but the critical curve γc(z) vs. z remains
the same. (b) Portion of a a triangular network and (c) a 2D packing-
derived network, both diluted to z = 3.3 < zc.
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for κ > 0, in which the branches of the scaling function G±
account for the strain regimes above and below γc. This scal-
ing form was also shown to successfully capture the nonlin-
ear strain stiffening behavior observed in experiments on re-
constituted networks of collagen, a filamentous protein that
provides mechanical rigidity to tissues as the primary struc-
tural component of the extracellular matrix [16]. Collagen
constitutes an excellent experimental model system on which
to study this transition, as it forms elastic networks that are
deeply sub-isostatic (z ≈ 3.4 [18], whereas zc = 6 in 3D) in
which individual fibrils have sufficiently high bending moduli
to be treated as athermal elastic rods.

Scaling theory — For the strain-controlled transition at a
fixed z < zc (arrow A in Fig. 1a), we define a reduced vari-
able t = γ − γc that vanishes at the transition and let h(t, κ)
denote the Hamiltonian or elastic energy per unit cell. This
energy depends on the bending stiffness κ that also vanishes
at the transition. Assuming the system becomes critical as
t, κ → 0, we consider the real-space renormalization of the
system when scaled by a factor L to form a block or effective
unit cell composed of Ld original cells, where d is the dimen-
sionality of the system [19]. Under this transformation, the
energy per block becomes h(t′, κ′) = Ldh(t, κ), where t′ and κ′

are renormalized values of the respective parameters. We as-
sume that the parameters evolve according to t → t′ = tLx and
κ → κ′ = κLy, where the exponents x, y can be assumed to be
positive, since the system must evolve away from criticality.
Combining these, we find the elastic energy

h(t, κ) = L−dh(tLx, κLy). (2)

The stress is simply given by the derivative with respect to
strain of the elastic energy per volume, which is proportional
to h(t, κ). Thus, σ ∼ ∂

∂γ
h ∼ ∂

∂t h(t, κ) ∼ L−d+xh1,0(tLx, κLy) and
the stiffness

K =
∂

∂γ
σ ∼

∂2

∂t2 h(t, κ) ∼ L−d+2xh2,0(tLx, κLy), (3)

where hn,m refers to the combined n-th partial with respect to
t and m-th partial with respect to κ of h. Being derivatives of
the energy with respect to the control variable γ, the stress and
stiffness are analogous to the entropy and heat capacity for a
thermal system with phase transition controlled by tempera-
ture. If we let L = |t|−1/x, then the correlation length scales
according to ξ ∼ L ∼ |t|−ν, from which we can identify the
correlation length exponent ν = 1/x. Thus, the stiffness can
be expressed as in Eq. (1), where G± (s) ∼ h2,0(±1, s) and

f = dν − 2 and φ = yν. (4)

The first of these is a hyperscaling relation analogous to that
for the heat capacity exponent for thermal critical phenom-
ena, but with the opposite sign. Thus, f > 0 corresponds to
nonlinear stiffness K that is non-divergent. For γ > γc, we ex-
pect that h2,0(1, s) is approximately constant for s � 1, so that
K ∼ |γ − γc|

f , while for γ < γc we expect that h2,0(−1, s) ∼ s

for s � 1, so that

K ∼ κ|γ − γc|
−λ, (5)

consistent with a bending-dominated regime. Moreover, the
susceptibility-like exponent is expected to be λ = φ − f .

Near the critical strain, athermal networks exhibit large,
nonaffine internal rearrangements in response to small
changes in applied strain [11, 16]. These nonaffine strain fluc-
tuations are analogous to divergent fluctuations in other crit-
ical systems. In response to an incremental strain strain step
δγ, the nonaffine displacement of the nodes is expected to be
proportional to δγ. Thus, the nonaffine fluctuations can be
captured by δΓ ∼ 〈

∣∣∣δu − δuA
∣∣∣2〉/δγ2, where δu−δuA represents

the deviation relative to a purely affine displacement δuA. For
large systems with small κ, δΓ diverges as t → 0 [16]. Since
the nonaffine displacements δu2 are determined by the mini-
mization of h(t, κ), for small κ, h ∼ κδu2 ∼ κδγ2δΓ. Thus, the
nonaffine fluctuations are predicted to diverge as

δΓ ∼
∂

∂κ

∂2

∂t2 h(t, κ) ∼ |t|−λ, (6)

with the same exponent λ = φ − f as in Eq. (5).
Computational model — To test the scaling relations

derived above, we study two complementary models of
fiber networks: triangular lattice-based networks and jammed
packing-derived networks. Our triangular networks consist of
fibers of length W arranged on a periodic triangular lattice
with lattice spacing l0 = 1, with freely-hinging crosslinks at-
taching overlapping fibers. To avoid system-spanning straight
fibers, we initially cut a single randomly chosen bond on
each fiber, yielding an initial network coordination number
z approaching 6 from below with increasing W [8, 20]. We
prepare packing-derived networks by populating a periodic
square unit cell of side length W with N = W2 randomly
placed, frictionless bidisperse disks with soft repulsive inter-
actions and with a ratio of radii of 1: 1.4. The disks are uni-
formly expanded until the point at which the system develops
finite bulk and shear moduli, after which a contact network
excluding rattlers is generated [6, 21, 22]. Sufficiently large
networks prepared using this protocol have an initial connec-
tivity z ≈ zc [23].

For both network structures, we reduce z to a value below
the isostatic threshold by bond dilution and removal of dan-
gling ends [24]. We use a random dilution process, in contrast
with special cutting protocols that have been used previously
to suppress variation in local connectivity and promote mean-
field behavior [7, 25]. Unless otherwise stated, we use trian-
gular networks of size W = 140 and packing-derived networks
of size W = 120, both with z = 3.3, and simulate ensembles of
at least 30 network realizations each. Sample network struc-
tures are shown in Fig. 1b-c.

We treat each bond as a Hookean spring with 1D modu-
lus µ, such that the contribution of stretching to the network
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energy is

HS =
µ

2

∑
〈i j〉

(
li j − li j,0

)2

li j,0
(7)

in which li j and li j,0 are the length and rest length, respectively,
of the bond connecting nodes i and j. Bending interactions
are included between pairs of nearest-neighbor bonds, which
are treated as angular springs with bending modulus κ. For
triangular networks, bending interactions are only considered
between pairs of bonds along each fiber, which are initially
collinear, whereas for packing-derived networks we account
for all nearest-neighbor bonds. The contribution of bending
to the network energy is

HB =
κ

2

∑
〈i jk〉

(
θi jk − θi jk,0

)2

li jk,0
(8)

in which θi jk and θi jk,0 are the angle and rest angle, respec-
tively, between bonds i j and jk, and li jk,0 = (li j,0 + l jk,0)/2. We
set µ = 1 and vary the dimensionless bending stiffness κ [26].

We apply incremental quasistatic simple shear strain steps
using Lees-Edwards periodic boundary conditions [27], min-
imizing the total network energy H = HS +HB at each step
using the FIRE algorithm [28]. We compute the stress tensor
as

σαβ = −
1
A

∑
i

fi,αui,β. (9)

in which ui is the position of node i, fi is the total force act-
ing on node i, and A is the area of the system [24, 29, 30].
For the triangular lattice, A = (

√
3 /2)W2, and for packing-

derived networks, A = W2. The differential shear modulus
K is computed as K = ∂σxy/∂γ. To symmetrize K, we shear
each network in both the γ > 0 and γ < 0 directions. Figure
2a shows K(γ) for triangular networks with varying bending
rigidity.

Results — First, we consider the scaling of K as a func-
tion of strain near γc. We determine γc for individual samples
as the strain corresponding to the onset of finite K in the CF
(κ = 0) limit, and utilize the mean of the resulting distribution,
〈γc〉, for our scaling analysis. The γc distribution for triangu-
lar networks of size W = 140 is shown in Figure 2a. We
observe that with increasing system size, the width of the γc

distribution decreases [24]. The stiffness K exhibits a small
discontinuity at γc for κ = 0, as shown in Fig. 2a, consis-
tent with prior reports in similar networks [31, 32]. We note
that this discontinuity is, however, consistent with the critical
nature of the transition, since K is not an order parameter.

We then determine f from K ∼ |γ − γc|
f in the low-κ limit.

We obtain a distribution of estimated f values using sample-
specific K curves and γc values for networks with κ = 0,
yielding an estimate of f = 0.73 ± 0.04 for triangular net-
works, as shown in Fig. 2b with decreasing κ. Similarly, for
packing-derived networks we find f = 0.68 ± 0.04 [24]. We
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FIG. 2. (a) Differential shear modulus K vs. shear strain for trian-
gular networks of connectivity z = 3.3, with varying reduced bend-
ing stiffness κ. The dashed line indicates the observed critical strain
γc for the ensemble. The inset shows the probability distribution of
γc for 50 individual network samples with κ = 0. (b) For γ > γc

and with decreasing κ, K converges to the form K ∼ |γ − γc|
f , with

f = 0.73±0.04. These data are for the same networks as in (a). Inset:
In the low-κ limit and below γc, K/κ converges to a power law in |∆γ|
with exponent f − φ ≈ −1.5.

then estimate φ by averaging values computed from two sep-
arate scaling predictions, as follows. For γ < γc, we show the
results for Eq. (5) in the inset to Fig. 2b. We also note that
continuity of K as a function of strain near γc requires that
G±(s) ∼ h2,0(±1, s) ∼ s f /φ for large s. Thus, K(γc) ∼ κ f /φ,
as shown in the insets of Fig. 3a-b. Averaging the φ values
computed from these corresponding fits, using our previously
determined values for f , we estimate φ = 2.26 ± 0.09 for tri-
angular networks and φ = 2.05 ± 0.08 for packing-derived
networks. These values of f and φ are used in Figs. 3a-b,
which demonstrate the collapse according to Eq. (1) [33].
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FIG. 3. Plotting the K vs. |∆γ| data for both (a) triangular networks
and (b) packing-derived networks according to the Widom-like scal-
ing predicted by Eq. 1, and using the values of f and φ determined
previously, yields a successful collapse for both systems. Dashed
lines have slope 0 and dotted lines have slope 1. Insets: At the criti-
cal strain, K ∼ κ f /φ.

We compute the nonaffine fluctuations δΓ as

δΓ =
1

Nl2cδγ2

∑
i

‖δuNA
i ‖

2 (10)

in which N is the number of nodes, lc is the average bond
length, and δuNA

i = δui − δuA
i is the nonaffine component of
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the displacement of node i due to the incremental strain δγ.
Plotting δΓ vs. γ − γc in Fig. 4a, we observe agreement with
the scaling predicted from Eq. (6) using the f and φ values de-
termined above. Importantly, as predicted, the corresponding
critical exponent λ = φ − f is the same as for Eq. (5), with
λ ' 1.5 [34]. Further, we observe that near γc, the expected
scaling δΓ(γc) ∼ κ f /φ−1 appears to be satisfied [24].

It is apparent from Fig. 4a that the divergence of the fluc-
tuations near γc is suppressed by finite-size effects. This is
consistent with a diverging correlation length ξ ∼ |t|−ν. Crit-
ical effects such as the divergence of δΓ are limited as the
correlation length becomes comparable to the system size W,
corresponding to a value of t ∼ tW = W−1/ν. Thus, the max-
imum value of δΓ increases as δΓ ∼ W (φ− f )/ν (Fig. 4a inset).
From least-squares fits to this scaling for both triangular and
packing-derived networks with κ = 0 and κ = 10−7, combined
with our estimates for φ and f , we determine that ν = 1.3±0.2
for both systems. We then verify that this leads to a scaling
collapse in a plot of δΓW ( f−φ)/ν vs tW1/ν for both systems with
κ = 0, as shown in Fig. 4b, and with finite κ [24]. This finite-
size scaling is consistent with the (hyperscaling-like) relation
f = 2ν − 2 in 2D from Eq. (4).
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FIG. 4. (a) Near the critical strain, the nonaffinity scales as δΓ ∼
|∆γ| f−φ. These data correspond to triangular networks with κ = 10−7

and z = 3.3, with varying system size. Inset: Nonaffine fluctuations
are limited by the system size. For small or zero κ, the maximum
of δΓ scales as max(δΓ) ∼ W (φ− f )/ν, with ν = 1.3 ± 0.2. (b) Plots
of δΓ/W (φ− f )/ν vs. (γ − γc)W1/ν for triangular networks and (inset)
packing-derived networks with κ = 0 demonstrate successful scaling
collapse using the f and φ values determined from K, with ν values
determined from the scaling relation.

Near the isostatic point — For networks near the isostatic
transition at z = zc, we define a dimensionless distance ∆ = z−
zc from the isostatic point and let h(γ, κ,∆) be the Hamiltonian
or elastic energy per unit cell. At the isostatic point, since
γc = 0, t above reduces to the strain γ. Assuming the system
becomes critical as γ, κ,∆ → 0, we can follow a similar real-
space renormalization procedure as above, resulting in

h(γ, κ,∆) = L−dh(γLx, κLy,∆Lw). (11)

Although the exponents x, y, and w at the isostatic point can
be assumed to be positive, we do not necessarily assume the
same values of the exponents x and y as determined for the

strain-controlled transition. We can again determine the stress
σ and stiffness K as in Eq. (3). By letting L = |∆|−1/w, we
again identify the correlation length exponent ν′ = 1/w and
find

K ∼ |∆| f
′

h2,0,0(0, κ/|t|φ
′

,±1), (12)

where

f ′ = (d − 2x)ν′, φ′ = yν′. (13)

Moreover, following similar arguments as above, it can be
shown that δΓ ∼ |∆|−λ

′

, where λ′ = φ′ − f ′ [24, 35], consistent
with the values f ′ ' 1.4 ± 0.1, φ′ ' 3.0 ± 0.2, ν′ ' 1.4 ± 0.2,
and λ′ ' 2.2 ± 0.4 reported in Ref. [8]. While our approach
uses the elastic energy, it is interesting to note that prior work
on rigidity percolation has suggested the use of the number of
floppy modes as a free energy [36].

Conclusion — The scaling theory and relations derived
here for the strain- and connectivity-controlled rigidity tran-
sitions in athermal fiber networks are consistent with our nu-
merical results, as well as prior results near the isostatic point
[8–10]. Interestingly, for the subisostatic, strain-controlled
transition, we observe that simulations of both triangular and
packing-derived networks exhibit consistent non-mean-field
exponents. This, together with agreement with the hyperscal-
ing relation in Eq. (4) suggest that the upper critical dimension
for fiber networks is du > 2, in contrast with jammed pack-
ings at the isostatic point [12]. Our observations, combined
with prior evidence of similar exponents for alternate subiso-
static network structures, including 2D and 3D phantom net-
works, honeycomb networks, and Mikado networks [11, 37],
suggest that non-mean-field behavior might be ubiquitous in
randomly-diluted subisostatic networks. Interestingly, the hy-
perscaling relation in Eq. (4), together with the observation
that f > 0, suggests that fiber networks satisfy the Harris cri-
terion [38], which would imply that such networks should be
insensitive to disorder. Further work will be needed to test this
hypothesis, as well as the scaling relations derived here in 3D.
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