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We develop a theory of Coulomb drag due to momentum transfer between graphene layers in
a strong magnetic field. The theory is intended to apply in systems with disorder that is weak
compared to Landau level separation, so that Landau level mixing is weak, but strong compared
to correlation energies within a single Landau level, so that fractional quantum Hall physics is not
relevant. We find that in contrast to the zero-field limit, the longitudinal magneto-Coulomb drag
is finite, and in fact attains a maximum at the simultaneous charge neutrality point (CNP) of both
layers. Our theory also predicts a sizable Hall drag resistivity at densities away from the CNP.

Introduction.— Progress in preparing high quality sam-
ples of graphene [1, 2] and other atomically thin two-
dimensional (2D) systems has made it possible to study
interlayer interaction effects in Coulomb-coupled electron
gas layers separated by only a few nanometers. The
archetypical Coulomb-coupling phenomenon is drag re-
sistance due to Coulomb interactions between layers [3].
When an external electric field drives a current through
one of the layers, there is a non-zero rate of net momen-
tum transfer from electrons in the drive layer to electrons
in the drag layer, resulting in a drag voltage in an open-
circuit geometry. This intriguing effect has been exten-
sively studied theoretically and experimentally in con-
ventional 2D electron gas (2DEG) systems. Atomically
thin Dirac electron systems like graphene present new
challenges to theories of Coulomb drag because stronger
coupling can be achieved by placing the two layers closer
together [4, 5].

The weak coupling regime of Coulomb drag in double-
layer graphene system has been explored theoretically [6–
14] and realized experimentally [15]. Striking differences
compared with the zero field case are observed [16–19]
when closely separated (& 1 nm) double-layer graphene
or bilayer graphene structures are placed in weak perpen-
dicular magnetic fields. The observations of a finite longi-
tudinal drag resistivity at the simultaneous CNP of both
layers and of a large Hall drag away from this density
have been particularly intriguing. Very recently, strong-
field Coulomb drag in the quantum Hall regime has been
measured in double layers of graphene [22] and bilayer
graphene [20, 21].

In this Letter, we develop a theory of Coulomb drag
due to momentum exchange between 2D graphene sheets
in the presence of strong magnetic fields. We consider the
case where fields are strong enough for weakly disorder-
broadened Landau levels to be well-resolved. Our theory
does not apply when an exciton condensate is present, or
in the weak-disorder, low-temperature regime at which
the fractional quantum Hall effect and other phenomena
associated with strong electronic correlations appear. We
find that the drag resistivity behaves very differently in
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FIG. 1: (Color online) (a) Diagrams for the nonlinear suscep-
tibility Γ. The black (dark) wavy line denotes a vector po-
tential coupled to a current vertex and the light (green) wavy
lines denote scalar potentials coupled charge vertices. (b)
Diagram for the drag transconductivity. Interlayer screened
Coulomb interactions ( green (light) wave lines representing
interlayer Coulomb interactions U(q, ω) link the two triangle
nonlinear susceptibility diagrams.

the strong magnetic field and zero magnetic field lim-
its. As we will show, a finite drag resistivity is present
at the simultaneous CNP of both layers at strong fields,
whereas drag vanishes at that point in the B = 0 case [6].
Away from the CNP, we find a sizable Hall drag resistiv-
ity. These two main findings from our theory corroborate
recent experimental observations [22].

Theory.— The eigenstates of the graphene free-particle
Hamiltonian consist of a special Dirac point Landau level
(LL) labelled by (n = 0, X), and other LLs labeled by
(n, s,X), where n = 1, 2, . . . is a LL index, s = ± is
a band label (conduction band + and valence band −),
and X is a Landau gauge guiding center label. The LL
energies are sεn = s~ωc

√
n where ωc =

√
2v/`B with

v the Dirac velocity (v = 106 ms−1 in graphene) and
`B =

√
~/e|B| the magnetic length [23]. Our theory

is applicable in the regime kBT,∆ε � ~/τ , where ∆ε
is the typical LL separation near the Fermi level and
~/τ the disorder broadening. The central quantity in
the Coulomb drag problem [24, 25] is the nonlinear sus-
ceptbility (q, ω,B) [See Fig. 1(a)]. We now derive an
expression for this quantity that is valid for graphene in
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a magnetic field. The Green’s function in Fig. 1(a) is

Gn,s,X(ε) =
|n, s,X〉〈n, s,X|
ε− εs,n + i/2τ

, (1)

where |n, s,X〉 is an eigenstate [26]. The three vertices
in the nonlinear susceptibility diagram Fig. 1(a) contain
matrix elements of the current and charge density oper-
ators between different LL wavefunctions. In a contin-
uum model, the eigenstates are spinors with components
on both honeycomb sublattices. The current and charge
density matrix elements are:

〈n2, s2, X2|jx|n3, s3, X3〉 = evδX2,X3

×Nn2Nn3 [s2δn2−1,n3 + s3δn2,n3−1] , (2)

〈n1, s1, X1|eiq·r|n2, s2, X2〉 = δX1,X2+qy`2B
eiqx(X1+X2)/2

×Nn1
Nn2

[Fn1,n2
(q) + s1s2Fn1−1,n2−1(q)] , (3)

where Nn = δn,0+(1−δn,0)/
√

2 is a normalization factor,
and we have defined

Fn1,n2
(q) =

√
n<!

n>!
e−q

2`2B/4Ln>−n<
n<

(
q2`2B

2

)(
iq̃`B√

2

)n>−n<

.

(4)
In Eq. (3), q = |q|, q̃ = qx + iqy, n> = max(n1, n2),
n< = min(n1, n2), and Lαn is the generalized Laguarre
polynomial of degree n. Evaluating Fig. 1(a) using the
standard Matsubara Feynman diagram technique and
Eqs. (1)-(4), we obtain the following compact expression
for the nonlinear susceptibility:

Γ(q, ω,B) = 2`2Bq × B̂ Im Π(q, ω,B), (5)

where B̂ is the direction of the magnetic field,

Π(q, ω,B) = − g

2π`2B

∞∑
n1,n2=0

∑
s1,s2=±

(6)

fs1,n1 − fs2,n2

ω + s1εn1
− s2εn2

+ i/2τ
Fs1,s2(q`B , n1, n2),

g = 4 accounts for the spin and valley degeneracy, and
fs,n is the Fermi occupation factor for the (n, s,X) LL.
The form factor F in Eq. (6) is

Fs1,s2(x, n1, n2) =
e−x

2/2

4

(
x2

2

)n>−n<

×

[
s1

√
n<!

n>!
Ln>−n<
n<

(
x2

2

)

+s2

√
(n< − 1)!

(n> − 1)!
Ln>−n<

n<−1

(
x2

2

)
θ (n< − 1)

]2
, (7)

where θ(x) = 1 for x ≥ 0 and 0 otherwise. The quantity
Π in Eq. (6) is the polarization function of Dirac fermions
in a perpendicular quantizing magnetic field [27]. The

nonlinear susceptibility Γ is therefore directly propor-
tional to the imaginary part of the polarization function,
as in the conventional 2DEG case with a single non-chiral
parabolic band [28].

This finding might seem surprising since the Γ(q, ω) ∝
Im Π(q, ω) property of a conventional 2DEG [24, 25] does
not apply to the nonlinear susceptibility of graphene [7]
in the absence of a magnetic field. This difference can
be explained by noting that while the energy dispersions
of the conventional 2DEG and graphene are different at
B = 0, both have dispersionless Landau levels at strong
B. We therefore conjecture that, in a strong magnetic
field when disorder does not appreciably mix Landau lev-
els, the simple relationship Γ ∝ Im Π(q, ω) is a universal
feature of all clean two-dimensional electron systems, re-
gardless of their energy dispersions. In such a case the
nonlinear susceptibility is, like the polarization function,
dominated by inelastic inter-LL transitions of electrons
from one localized LL orbit to another localized LL orbit.

Another remarkable distinction of the strong magnetic
field is brought to light by examining the drag resistiv-
ity at the CNP. The nonlinear susceptibility of graphene
in the absence of a magnetic field was first evaluated in
Ref. [6]. Making use of the electron-hole symmetry of the
bands and time-reversal invariance it is straightforward
to show that, at B = 0, Γ(q, ω) is an odd function of the
chemical potential µ. When the chemical potential is at
the Dirac point, Γ = 0 because the two diagrams com-
prising Fig. 1(a) exactly cancel. Drag therefore vanishes
when either layer is charge neutral. At high temperatures
this behavior has indeed been observed experimentally
[15, 16]. In the presence of a strong magnetic field, on
the other hand, the nonlinear susceptibility Eq. (5) is an
even function of µ, as we prove below.

First, we note that electron-hole symmetry is preserved
for the s = ± LLs so that fs,n(µ) = 1 − f−s,n(−µ),
and that the form factor in Eq. (7) is invariant under
s1 → −s1 and s2 → −s2. Next we can interchange the
labels n1 ↔ n2, s1 ↔ s2 to conclude that Π(q, ω,B) is
invariant under µ → −µ. It then follows from Eq. (5)
that Γ(q, ω,B;µ) = −Γ(−q, ω,B;−µ) = Γ(q, ω,B;−µ).
The final identity requires the observation that the form
factors in Eq. (7) depend on q = |q| only. Therefore, the
contributions from the two diagrams in Fig. 1(a) do not
cancel at µ = 0 as they do in the absence of broken time-
reversal symmetry. Drag can be finite even when one of
the layers is charge neutral.

The interlayer transconductivity diagrams [24, 25]
yield the drag conductivity [Fig. 1(b)]

σD
αβ =

e2

16π~kBT
∑
q

∫ +∞

−∞

dω

sinh2(ω/2kBT )

×ΓL
α(q, ω,B)ΓR

β (q, ω,−B)|U(q, ω,B)|2, (8)

where the superscripts ‘L’ and ‘R’ (left and right) label
the two layers, and U(q, ω,B) is the screened interlayer
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Coulomb interaction in the random phase approxima-
tion [29]. The Coulomb interaction strength in graphene
is characterized by the dimensionless coupling constant
αG = e2/(ε~v), where ε is an effective dielectric con-
stant which we view as a parameter that can be altered
by changing the sheet’s dielectric environment [30]. The
quantity measured in most Coulomb drag experiments is
the drag resistivity, which can be obtained by inverting
the four component (two layers each with two directions)
conductivity tensor←→σ of the bilayer ,←→ρ = (←→σ )−1. The
conductivity tensor becomes diagonal in Cartesian labels
when x̂ and ŷ components are replaced by left and right
handed (x̂± iŷ) components. It simplifies further in the
special case of identical left and right sheets since parallel
flow and counterflow are then decoupled.

For the general case we introduce the definitions:

Sxx = (σD
xx)2 − σL

xxσ
R
xx + σL

xyσ
R
xy, (9)

Sxy = σL
xyσ

R
xx + σL

xxσ
R
xy, (10)

where σL,R
xx and σL,R

xy are the longitudinal and Hall con-
ductivities in the individual layers. Because the Hall drag
conductivity σD

xy vanishes due to the odd momentum de-

pendence of Γ ∝ q× B̂ in Eq. (5), the general drag resis-
tivity tensor expression simplifies to

ρDαβ = σD
xxSαβ/(S2xx + S2xy), (11)

where α, β = x or y. In 2DEG systems, the Hall drag
resistivity is negligible for ωcτ � 1, where ωc is the cy-
clotron frequency [24, 33]. In strong magnetic fields, the
Hall drag resistivity is finite and can be significant, aris-
ing from the longitudinal drag combined with the in-
tralayer Hall responses σL,R

xy [34]. From Eq. (10), we

observe that the Hall drag ρDxy is comparable to the lon-

gitudinal drag ρDxx in magnitude except when (1) both
layers are characterized by well-formed quantum Hall
plateaus such that the longitudinal conductivities van-
ish σL,R

xx = 0; or (2), since σL,Rxx (µ) = σL,Rxx (−µ) and
σL,Rxy (µ) = −σL,Rxy (−µ), the two layers have opposite car-
rier densities [15–17].
Dirac-Point Drag and Hall Drag.— In the following we
present numerical results for the drag resistivities evalu-
ated from Eqs. (8)-(11). We employ the Thomas-Fermi
approximation in the screened interlayer Coulomb inter-
action [30]. We first keep the density of one layer (nL)
fixed at the CNP and vary the density of the other layer
(nR). Fig. 2(a) shows the longitudinal drag resistivity
as a function of density in the vicinity of the CNP for
B = 0.5 T. The most important feature we find is that
ρDxx has its maximum value at the simultaneous CNP
nL,R = 0. Away from the CNP, ρDxx is an even function
of nR and decreases with its magnitude. In Fig. 2(b) we
show the Hall drag resistivity ρDxy, which is an odd func-

tion of nR. The magnitude of ρDxy rises sharply from zero
away from the simultaneous CNP and then drops gradu-
ally as the layer’s carrier density is further increased. In
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FIG. 2: (Color online) Longitudinal (a) and Hall (b) drag
resistivities of double-layer graphene as a function of right-
layer electron density nR for nL = 0, B = 0.5 T, T = 300 K,
d = 30 Å, 1/2τ = 1 meV, and αG = 0.4. The filling factor is
ν = 4.143n[1011 cm−2]/B[T] ≈ ±12 for this range of density.
Panel (c) shows the corresponding drag conductivities and (d)
the longitudinal and Hall conductivities.

Fig. 2(c)-(d) we also depict the behavior of the drag con-
ductivity as well as the R layer’s longitudinal and Hall
conductivities. As shown in Fig. 2(c), the magnitude of
the drag conductivity |σD

xx| decreases with density. We
note that the sign of the drag conductivity is negative
and its value is three orders of magnitude smaller than
the longitudinal and Hall conductivities σxx,xy, which re-
sults in a positive sign of the drag resistivity ρDxx. Since
σL
xy = 0 and σD

xx � σL,R
xx , from Eqs. (9)-(11) we ob-

serve that the peak of ρDxy occurs approximately when

|σR
xx| = |σR

xy|, which is a consequence of the open-circuit
condition of the drag layer.

Fig. 3 shows the dependence of ρDxx on nL and nR.
We observe that ρDxx is positive in the two quadrants of
electron-hole drag where the ‘L’ and ‘R’ carriers have op-
posite polarities, and mostly negative in the quadrants of
electron-electron and hole-hole drag, with ρDxx < 0 except
near the simultaneous CNP at nL,R . 1010 cm−2. These
features are in good agreement with the latest experi-
ment [22] performed under strong magnetic fields. With
the exception of the CNP vicinity, the signs of magneto-
drag for the cases of same and opposite carrier polarities
depicted in Fig. 3 are the same as that in the zero-field
case [6, 7, 15, 16] and consistent with magnetodrag in
conventional 2DEGs [28]. Unlike conventional 2DEGs
however, which would exhibit no drag when the carrier
density is tuned to zero in one of the layers, double-layer
graphene exhibits a distinctive finite magnetodrag at the
simultaneous CNP due to the presence of a Dirac sea
of electrons and a gapless energy dispersion. While in-
terlayer energy transfer has been proposed as a possible
mechanism [12] to explain the finite negative drag resis-
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tivity at the CNP observed in zero-field experiments, we
emphasize that such a mechanism does not produce the
finite positive drag at the CNP [37] in the presence of a
strong magnetic field that is predicted by our theory.

The fact that σDxx is non-zero and has a negative sign at
µ = 0 can be physically explained as follows. Let us as-
sume that the magnetic field is in the z-direction and the
electric field is applied to the active layer in the positive
y-direction. Assuming that the longitudinal components
are negligible compared to the transverse components of
the intralayer σL,R, this implies that particle currents
in the active layer are in the positive x-direction (inde-
pendent of whether they are electrons or holes). There-
fore, the drag force on the passive layer is in the positive
x-direction. This acts like an effective electric field in
the positive (negative) x-direction for holes (electrons),
which results in an “E”×B drift of the holes (electrons)
in the negative (positive) y-direction. Hence, for both
electrons and holes, the electric current in the passive
layer is in the negative y-direction; i.e., σDxx < 0. At
finite temperature the drag currents due to thermally
excited electrons and holes reinforce each other and do
not cancel. The drag conductivity is an even function of
the chemical potential, consistent with the evenness of Γ
discussed above.

Since a negative longitudinal conductivity results in a
thermodynamic instability, our findings beg an impor-
tant question: does a negative drag conductivity also
implies a thermodynamic instability? The condition for
thermodynamic stability is that the conductivity matrix
be positive definite. In the presence of a magnetic field,
the Hall conductivities render the conductivity matrix←→σ
anti-symmetric. For an arbitrary square matrix that is
not necessarily symmetric, the positive definiteness con-
dition depends on the positivity of the determinant of the
symmetric part of the matrix only [36]. It follows that
the Hall conductivities σL,R

xy drop out and the resulting

determinant is given by σL
xxσ

R
xx − (σD

xx)2, which is posi-
tive definite, sharing the same expression with the B = 0
case.

Finally, we have calculated the longitudinal drag re-
sistivity ρDxx at the simultaneous CNP as a function of
the magnetic field for different values of the interaction
parameter αG. Fig. 4 shows that ρDxx is highly sensitive
to changing magnetic field strength, increasing to sev-
eral kΩs over a few teslas. It also shows that changing
the electron-electron interaction strength αG from 0.2 to
0.8 counterintuitively decreases ρDxx. This finding can be
explained by examining the αG dependence of the inter-
layer interaction U(q, ω,B) [30]. Unlike the single layer
case where the screened interaction V ∼ αG/(1 + αG)
monotonically increases with αG, the screened interlayer
interaction of a bilayer U ∼ αG/(1 + α2

G) decreases for
large αG. This behavior is fully reflected in the drag
resistivity as a function of αG depicted in the inset of
Fig. 4.
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FIG. 3: (Color online) Longitudinal drag resistivity as a func-
tion of right-layer electron density nR and left-layer electron
density nL for the same values of B, T, d, and αG as in Fig. 2.
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FIG. 4: (Color online) Longitudinal drag resistivity at the
simultaneous CNP nL = nR = 0 as a function of mag-
netic field for different values of interaction coupling αG =
0.2, 0.4, 0.6, 0.8. Inset: The same quantity as a function of αG

at a fixed magnetic field B = 3 T. T and d are the same as in
previous figures.

In summary, we find that the magneto-drag resistiv-
ity of graphene double layers has a maximum and that
the Hall drag resistivity vanishes at the simultaneous
CNP. The Hall drag resistivity is however comparable
to the longitudinal resistivity at nearby densities, even
though the Hall drag conductivity vanishes. Our the-
ory accounts for momentum transfer due to interactions
between density-fluctuations in the two layers, but does
not account for strong correlations or address all possi-
ble scenarios that have been raised [17, 38] in connection
with graphene double-layer magnetodrag. The physics
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we explore must however contribute significantly to any
magnetodrag measurements.
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