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Strongly correlated metals often display anomalous transport, including T -linear resistivity above
the Mott-Ioffe-Regel limit. We introduce a tractable microscopic model for bad metals, by restoring
in the well-known Hubbard model — with hopping t and on-site repulsion U — a ‘screened Coulomb’
interaction between charge densities that decays exponentially with spatial separation. This interac-
tion lifts the extensive degeneracy in the spectrum of the t = 0 Hubbard model, allowing us to fully
characterize the small t electric, thermal and thermoelectric transport in our strongly correlated
model. Throughout the phase diagram we observe T -linear resistivity above the Mott-Ioffe-Regel
limit, together with strong violation of the Weidemann-Franz law and a large thermopower that can
undergo sign change.

Introduction.— In conventional metals, electrical resis-
tance arises from the microscopic scattering of electronic
quasiparticles. This paradigm is challenged in bad met-
als, where the resistivity grows with temperature above
the Mott-Ioffe-Regel (MIR) limit [1]. Such behavior is
widely observed in strongly correlated materials at high
temperatures [2, 3], and hints at non-quasiparticle trans-
port which must be understood along radically different
lines than traditional Boltzmann theory.

High temperature, bad metallic regimes of strongly
correlated materials are often far from the battleground
of multiple low temperature competing orders. Indeed,
bad metals exhibit similarities across many materials,
including an often noted T -linear resistivity [4]. Despite
suggestive universal behavior, and some success repro-
ducing this behavior numerically using methods such as
dynamical mean field theory (DMFT) [5–8], the under-
standing of bad metals has been hampered by the lack of
a microscopic, theoretical model in which the resistivity
can be computed in a transparent way without artificial
control parameters. To this end, we introduce a realistic
modification of the widely-studied Hubbard model for
correlated electrons that allows us to obtain explicit re-
sults for high temperature, non-quasiparticle, bad metal
transport.

The model.— We will study the lattice Hamiltonian

H = t
∑
〈ij〉,s

c†iscjs+U
∑
i

ni↑ni↓+
V

2

∑
i6=j

e−|~xi−~xj |/` ninj .

(1)

As usual the density ni =
∑
s c
†
iscis, with s ∈ {↑, ↓}

the fermion spin. The positions ~xi = a~ı form a two di-
mensional square lattice. The first two terms in (1) com-
prise the usual Hubbard model, with hopping t over near-
est neighbours 〈ij〉 and on-site repulsion U . The final
‘screened Coulomb’ interaction is short range, but not
strictly finite range. Such terms are dropped in the con-
ventional on-site Hubbard model (which has V = 0), and
also from finite range extensions thereof, and are essential

for our results. The precise functional form of the inter-
action does not qualitatively affect our results. Restoring
these terms allows us to obtain explicit and finite re-
sults for transport coefficients in the weak hopping regime
t� {kBT,U, V }. Here T is the temperature. These tem-
peratures are higher than those of most observed bad
metals; they pertain instead to recent transport experi-
ments in cold atomic gases [9]. In condensed matter these
conditions may be realized in, for example, oxide thermo-
electrics [10] and magic angle graphene bilayers [11]. Our
immediate objective is rather to obtain controlled and
physically transparent bad metal transport.

Small t transport in the Hubbard model has been stud-
ied in a number of works [10, 12]. However, the spectrum
of the Hubbard model with t = 0 is extremely degenerate,
with excitations occupying either the single-site upper or
lower Hubbard band. In contrast, the new interaction in
the model (1) — that is exponentially localized to within
a microscopic range ` but not strictly finite range — is
sufficient to split the extensive degeneracy of the t = 0
theory (spin degeneracy remains, but will play no role in
our discussion). This allows us to use conventional non-
degenerate perturbation theory in small t to obtain a low
energy spectral density, and hence transport coefficients,
that are finite in the infinite volume limit.

All of the terms in the U and V interactions in (1) com-
mute. This means that all computations in small t per-
turbation theory can be evaluated using classical Monte
Carlo simulations in the t = 0 theory. This statistical
description of bad metal transport is an immense simpli-
fication. The statistical regime is intrinsically incoherent
and distinct from Boltzmann-Drude theory, as empha-
sized in [13]. Using classical Monte Carlo, we are able
to work with a large system size in two dimensions, and
furthermore study the entire filling range 0 ≤ n ≤ 2 and
obtain the full thermoelectric conductivity matrix.

The conductivity.— To leading order at small hopping
t, the conductivity is computed as follows. At t = 0, oc-
cupation number configurations {n} define eigenstates of



2

charge N{n} = e
∑
is nis and energy E{n} = 1

2

∑
is nisεis,

with on-site energies εis = Unis̄ + V
∑
j 6=i e

−|~xi−~xj |/` nj .
Here nis̄ is the number of electrons at site i with opposite
spin to s. Using classical Monte Carlo simulation, typical
configurations {n} are generated for a given temperature
and filling [14]. The real and dissipative electrical con-
ductivity is a weighted sum over these configurations

σ1(ω) =
2e2

h

(πat)2

~ vol
f(ω)

∑
{n}

e−β(E{n}−µN{n})

Z
∑
i,s

∆is(ω) .

(2)
Here vol is the volume and f(ω) = (1− e−β~ω)/~ω. The
inverse temperature β ≡ 1/(kBT ) and the partition func-
tion Z =

∑
{n} e

−β(E{n}−µN{n}). Given a configuration,

the spectral weight ∆is(ω) counts the number of excita-
tions with energy ~ω that can be generated with a sin-
gle hop between neighbouring sites. ∆is(ω) has units of
inverse frequency and is defined precisely in the Supple-
mentary Material. Analogous formulae exist for the ther-
moelectric conductivity α and the thermal conductivity
κ, and are also given in the Supplementary Material.

The expression (2) is strictly only valid for ~ω & t. At
lower frequencies non-perturbative localization physics
could potentially deplete the density of states ∆is(ω).
This concern is addressed in a later section. We proceed
to use (2) to obtain dc transport observables.

Figure 1 shows a representative occupation number
configuration, together with the corresponding on-site
energies εi↑. Differences of neighboring on-site energies
determine ∆is(ω) and hence the optical conductivity, also
shown in the figure. The conductivity is computed using
15000 weighted configurations in (2). The optical conduc-
tivity displays transitions between lower and upper ‘Hub-
bard bands’ together with a low frequency conductance
peak. In the t = 0 Hubbard model, the optical conduc-
tivity is a sum of delta functions at ω = 0,±U . In Figure
1 these peaks have been broadened, leading to a finite dc
conductivity. This occurs because the exponentially lo-
calized interaction V , with any range ` > `? ≈ 1.76a, lifts
the extensive degeneracy of the t = 0 Hubbard model, as
we show in the Supplementary Material. This is the only
essential property of the interaction.

The low frequency peak in figure 1 is Gaussian, in con-
trast to a conventional Lorentzian Drude peak. A Gaus-
sian peak is also seen in the high temperature expansion
of a hard boson model [15], and indicates that the energy
differences contributing to σ(ω) are essentially random.
Transport results.— We will work throughout with the

values V = 0.1U and ` = 2a. Thus the exponential inter-
action is microscopically short range and the small value
of V means that results can be compared meaningfully
to the Hubbard model. The hopping t� {U, V, kBT}.

The resistivity for t � kBT . U is shown for various
fillings in figure 2. Away from the Mott insulating up-
turn at n = 1, the resistivity is approximately T -linear,
with some weak curvature at lower temperatures. The
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FIG. 1. On-site energies for a typical configuration with
a 29 × 29 lattice at temperature kBT = 0.76U , coupling
V = 0.1U , range ` = 2a and filling n = 0.63. Top left shows
the occupation numbers for the configuration (white is unoc-
cupied, gray is singly-occupied and black is doubly-occupied).
Top right shows the on-site potentials for up spins, εi↑, gen-
erated by this configuration. A broadened upper (red/yellow)
and lower (blue) Hubbard band are seen. Bottom shows the
corresponding low frequency conductance peak. The solid line
shows a fit to a Gaussian. The inset shows the optical con-
ductivity over a wider frequency range, including transitions
between the lower and upper Hubbard bands.

magnitude of the resistivity is ρ ∼ h/e2 × U2/t2 � h/e2

throughout, so the system is a bad metal.
Themoelectric and thermal transport are usefully

quantified by the thermopower S ≡ α/σ and Lorenz ratio
L ≡ κ/(σT ), respectively. Figure 4 shows the Lorenz ra-
tio for t� kBT . U . Strong violation of the Weidemann-
Franz (WF) law is seen across the entire phase diagram:
L � L0, the Sommerfeld value, almost everywhere, ex-
cept for just above the Mott regime, where L� L0. The
WF law is not expected to hold at these high tempera-
tures, but L0 remains a useful yardstick for the relative ef-
ficacy of thermal and charge transport. The thermopower
is shown in the Supplementary Material, and displays
behavior widely seen in e.g. DMFT studies of strongly
correlated systems [16–19]: large values S ∼ kB/e and
changes in sign as a function of temperature.

At the highest temperatures kBT � U, V our numeri-
cal results are in excellent agreement with known expres-
sions for the standard on-site Hubbard model [10, 12, 20].
We summarize these results in the Supplementary Mate-
rial. The salient features are an exact T -linear resistivity,
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FIG. 2. Resistivity as a function of temperature. Statistical
errors are shown.

a temperature-independent thermopower S and a Lorenz
ratio L ∼ 1/T 2. These limiting behaviors are largely in-
dependent of the interactions [4, 17, 21, 22].

Origin of T-linear resistivity.— The Gaussian zero fre-
quency peak in σ(ω) can be fit to

σ1(ω) = Dτ e−π(τω)2 . (3)

Thus τ is the current relaxation or transport lifetime.
The resistivity is ρ = 1/(Dτ). The ‘Drude weight’ D is
the area under the low frequency conductance peak. It is
best thought about as follows. The total kinetic energy
of all electrons can be written Ktot ≡

∫∞
−∞ σ1(ω)dω [23].

The ratio D/Ktot therefore measures the reduction of the
conductance peak kinetic energy due to interactions. In
our incoherent regime, the spectral weight D corresponds
to the kinetic energy of hopping processes with a small
potential energy transition.

Figure 3 shows the current relaxation rate 1/τ as a
function of temperature. The relaxation rates all saturate
to a constant of order V/~ at high T . The V interaction
is responsible for the finite transport lifetime at small
t, whereas in the Hubbard model this lifetime must be
generated nonperturbatively in t. Away from half filling,
the relaxation rate becomes only mildly temperature-
dependent below kBT ∼ U and remains nonzero at the
lowest temperatures we have probed [24]. The approxi-
mate T -linearity of the resistivity over this temperature
range is instead controlled by the kinetic energy of low
energy hopping processes, which exhibits a strong tem-
perature dependence D ∼ t2/T , shown in the inset of
figure 3. The decrease of D with increasing temperature
is due to increasingly random single particle kinetic ener-
gies of both signs, that tend to cancel. We expect the low
temperature divergence in D to be cut off below T ∼ t,
crossing over to the Fermi liquid value D ∼ t.

Figure 4 shows the ratio D/Ktot across the phase di-
agram. The values of D/Ktot ∼ 0.4 − 0.6 seen in the
proximity of the Mott regime are characteristic of those
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FIG. 3. Current relaxation rate as a function of temperature.
Inset: Inverse Drude weight as of function of temperature.
The statistical uncertainty in the fit to (3) is negligible.

observed in strongly correlated metals [23].
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FIG. 4. Left: Violation of the Weidemann-Franz law across the
phase diagram. The Sommerfeld value L0 ≡ π2/3× (kB/e)

2.
Right: Fraction of the electronic kinetic energy in the conduc-
tance peak — as measured by D/Ktot.

Distinct bad metal regimes.— Hidden under the fea-
tureless T -linear resistivity lies a crossover in behavior at
kBT ∼ U . There are in fact two bad metallic regimes in
the model; temperatures kBT . U are physically distinct
from the infinite temperature limit. This can be seen by
considering the diffusivity.

In the small t regime it is necessary to consider coupled
charge and heat diffusion. There are three conductivi-
ties σ, α and κ and three associated thermodynamic sus-
ceptibilities: χ ≡ −e2 ∂2f/∂µ2, ζ ≡ −e ∂2f/∂T∂µ and
cµ ≡ −T ∂2f/∂T 2, as well as the specific heat at fixed
charge cn ≡ cµ − Tζ2/χ. These determine two indepen-
dent diffusivities D± by [4]: D+D− = σ/χ · κ/cn and
D+ +D− = σ/χ+ κ/cn + T (ζσ − χα)2/(cnχ

2σ). Figure
5 shows the diffusivity D+ as a function of temperature
for several fillings. The behavior of D− is similar. The
diffusivities are temperature-dependent below kBT ∼ U
but constant at high temperatures. We have extended
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FIG. 5. Inverse diffusivity against temperature. The larger
errors bars on the diffusivity are due to a near-cancellation
in the computation of κ and cn, see Supplementary Material.
Inset: Inverse susceptibility against temperature.

the temperature range to make the saturation clearer.

The susceptibilities also exhibit crossovers at kBT ∼
U . For example, the charge compressibility χ is well-
described by 1/χ = a+ b T/U , for doping-dependent co-
efficients a and b. See inset of figure 5. The nontrivial
temperature dependence of the diffusivities and thermo-
dynamic susceptibilities conspire to cancel out of the elec-
trical resistivity, whose approximately T -linear behavior
is featureless across kBT ∼ U , as found in [9, 25].

The high temperature behavior of D± follows from
the Hubbard model formulae collected in the Supple-
mentary Material: D± = c±τ(aπt)2/~2 [1 +O(V/U)],
with c+ = 2/π and c− = n(2 − n)/π. Recall that τ
is temperature-independent at high temperatures. Writ-
ing D± . 1

2v
2τ , these expressions reveal the expected

‘Lieb-Robinson’-like microscopic operator growth veloc-
ity of v ∼ aπt/~, in the sense of [26]. At temperatures
kBT . U , the effective velocity v2

eff ≡ 2D+/τ becomes
temperature dependent, tracking the temperature depen-
dence of the kinetic energy D, discussed above.

Origin of bad metallic transport.— Figure 1, top right,
shows an interaction-induced, emergent disordered land-
scape of on-site potentials. The current decay rate is
set by the strength of inhomogeneities in this landscape:
1/τ ∼ ∆ε ∼ V/~. The separation of scales t � U, V im-
plies that the landscape evolves slowly, and is static on
the timescale of current decay. Therefore, while momen-
tum is microscopically relaxed by umklapp-like electronic
interactions, transport is effectively controlled by local
hops in an inhomogeneous potential. The usual argu-
ments for a Mott-Ioffe-Regel bound are thus inapplicable
because current is not carried by delocalized excitations
with a well-defined momentum. This is the same reason
that the bound does not apply to free electrons in a disor-
dered background potential, and raises the concern that
our interacting model may similarly exhibit localization.

Indeed, we noted above that the small t perturbative
computation of the conductivity is not strictly valid for
low frequencies ω ∈ (−t, t). We will not exclude the pos-
sibility that a gap opens in this frequency range, analo-
gously to how the Mott argument leads to a soft gap for
strongly disordered free electrons [27]. Interactions can
reduce the strength of the Mott argument due to an in-
creased many-body phase space [28]. Most importantly,
however, even if such many-body localization does oc-
cur in our model, it is fragile and can be destroyed by
coupling to physical degrees of freedom that have been
omitted for simplicity in the model. As a proof of con-
cept, we show in the Supplementary Material that cou-
pling our model to phonons with a Debye scale ω0 and
dimensionless electron-phonon coupling g smears out any
low frequency gap if t �

√
g ω0 kBT � U, V, kBT , while

leaving our transport results intact.
Discussion.— Recent transport measurements in a

cold-atomic realization of the Hubbard model with 0 ≤
kBT . U and t � U show remarkable similarities with
our results [9]. As we have found, the experiments show a
nontrivial temperature dependence of the diffusivity and
charge susceptibility, that cancel out to produce a close
to T -linear resistivity. The individual temperature depen-
dence and magnitude of these quantities are all similar to
those that we have found. This suggests that, at least for
temperatures kBT & t, our V interaction captures sim-
ilar physics to a nonperturbative treatment of t in the
on-site Hubbard model. Indeed, our results are also in
agreement with the trends observed in Quantum Monte
Carlo simulation of transport in a Hubbard model [25]
over a similar temperature range, with real time trans-
port behavior inferred from the Euclidean data [29]. A
smoking gun signature of our picture for transport is the
emergent disordered landscape predicted in our model.
It should be possible to directly observe this landscape
using local probes in cold atom experiments or, perhaps
more easily, in full quantum monte carlo simulations.

Finally, a hierarchy between the current decay rate and
the single particle bandwidth also underpins an inter-
esting recent body of work on strange and bad metals
in large N models [30–36] and DMFT [5–8]. Several of
these approaches share the feature of our model that the
conductivity is controlled by a single-particle electronic
spectral function describing rapid electron decay into an
inert ‘bath’. In our case the single-particle decay is caused
by the emergent disordered landscape.
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