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Abstract 

We present a new first-principles linear-response theory of changes due to perturbations in the quasiparticle self-

energy operator within the GW method. This approach, named GW perturbation theory (GWPT), is applied to calculate 

the electron-phonon (e-ph) interactions with the full inclusion of the GW non-local, energy-dependent self-energy 

effects, going beyond density-functional perturbation theory. Avoiding limitations of the frozen-phonon technique, 

GWPT gives access to e-ph matrix elements at the GW level for all phonons and scattering processes, and the 

computational cost scales linearly with the number of phonon modes (wavevectors and branches) investigated. We 

demonstrate the capabilities of GWPT by studying the e-ph coupling and superconductivity in Ba0.6K0.4BiO3. We 

show that many-electron correlations significantly enhance the e-ph interactions for states near the Fermi surface, and 

explain the observed high superconductivity transition temperature of Ba0.6K0.4BiO3 as well as its doping dependence. 
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First-principles calculation of electron-phonon (e-ph) coupling [1] is of tremendous interest as it serves as a non-

empirical approach to predict and understand a number of phenomena in condensed matter physics and materials 

physics, such as phonon-mediated superconductivity, electrical and thermal transport, quasiparticle energy 

renormalization, charge-density wave (CDW), and vibrational features in optical spectra. By formulating a linear-

response theory of density functional theory (DFT) [2] to phonon perturbations, density-functional perturbation theory 

(DFPT) [3–6] has been the prevailing and most efficient ab initio method to study the e-ph interactions within DFT. 

The e-ph coupling treated in DFPT is only approximate since the DFT orbital eigenvalues are not the true electron 

(or quasiparticle) energies. This is reflected in that, in general, the Kohn-Sham eigenvalues do not yield accurate band 

gaps and band widths nor information on lifetimes [7,8]. The exchange-correlation potentials 𝑉"# in DFT (such as 

those in the local-density approximation (LDA) [9] or the generalized gradient approximation (GGA) [10]) can only 

be at best considered as an approximation to the nonlocal, frequency-dependent self-energy operator Σ.  

The GW approximation [7,8,11–13] has proven, for many materials, to be an accurate ab initio method in capturing 

the many-electron correlation effects in the evaluation of the quasiparticle energies. In the GW approximation, the 

self-energy operator Σ is expanded in terms of the single-particle Green’s function G and the screened Coulomb 

interaction W to first order, i.e. Σ = 𝑖𝐺𝑊, hence named the GW method. By combining frozen-phonon technique 

with GW calculations, previous studies [14–20] have found that many-electron corrections to DFT e-ph coupling 

strength are essential to accurately describe a number of phenomena, such as the phonon dispersion in graphene and 

graphite [14,15], the temperature-dependent band gap in diamond [18], and superconductivity in Ba0.6K0.4BiO3 [17]. 

However, the frozen-phonon technique is limited to only investigate couplings to phonon wavevectors that are 

commensurate to a large supercell, which makes it prohibitive to achieve a fine sampling of the Brillouin zone (BZ). 

More importantly, frozen-phonon calculations can only provide some intra-band part of the e-ph matrix elements 

indirectly and an overall e-ph coupling strength by examining band energy shifts. The e-ph matrix elements between 

different bands and for wavevectors across the full BZ – the essential ingredient of microscopic e-ph formulations of 

many physical phenomena – are not available within frozen-phonon methods [1,17,19,20]. The importance of self-

energy effects in e-ph coupling and the severe limitations of the frozen-phonon GW technique thus point to a strong 

necessity for a linear-response GW theory (similar in spirit as DFPT [3-6]) to efficiently and accurately calculate the 

quasiparticle e-ph interactions at the GW level [1,17,19,20]. 

In this Letter, for the first time, we present a first-principles linear-response GW method to external perturbations, 

which we call GW perturbation theory (GWPT). In this scheme, the first-order change of the self-energy operator to 

a phonon perturbation	Δ𝐪,Σ is constructed from a linear-response calculation, which is performed within a single 

primitive unit cell for any phonon wavevector q and phonon branch 𝜈. This method avoids the use of supercells, and 

the computational cost naturally scales linearly with the number of phonon modes needed. More importantly from a 

physics view point, it provides the e-ph matrix elements at the GW level for any pairs of electronic states directly and 

efficiently, making GWPT a desirable ab initio method to systematically study e-ph interactions including many-
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electron self-energy effects. We demonstrate the power of the GWPT method by studying the e-ph coupling and 

superconductivity in Ba0.6K0.4BiO3 [21-23] as well as other doping concentrations away from 𝑥 = 0.4. We find that 

the GW self-energy renormalizes the DFT-LDA e-ph matrix elements non-uniformly across the BZ, and enhances the 

e-ph coupling constant 𝜆 by a factor of 2.4. The GWPT-calculated 𝜆 = 1.14 is strong enough to account for the 

high superconducting transition temperature Tc in Ba0.6K0.4BiO3. We show that the doping dependence in the 

superconductivity is mainly from a density-of-states (DOS) effect. 

Here the GWPT method is formulated for phonon perturbations, but it can straightforwardly be generalized to other 

perturbations such as electric field and strain. We present the theory for crystals with time-reversal symmetry (TRS), 

and spin indices are omitted for simplicity. The key quantity is the e-ph coupling matrix element 𝑔56,(𝐤, 𝐪). The e-

ph matrix element at the GW level can be constructed in a similar way that the quasiparticle energy is constructed [8], 

with the contribution from the GW self-energy replacing that from the exchange-correlation functional 𝑉"#(𝐫) in 

DFT; that is, 

 

𝑔56,<= (𝐤, 𝐪) = 𝑔56,>?@ (𝐤, 𝐪) − B𝜓5𝐤D𝐪EΔ𝐪,𝑉"#E𝜓6𝐤F + B𝜓5𝐤D𝐪EΔ𝐪,ΣE𝜓6𝐤F, 

(1) 

where 

  

𝑔56,>?@ (𝐤, 𝐪) = B𝜓5𝐤D𝐪EΔ𝐪,𝑉HIE𝜓6𝐤F 

(2) 

is the e-ph matrix element at the DFT level [1]. 𝑉HI is the total Kohn-Sham potential in DFT, and 𝜓6𝐤 and 𝜓5𝐤D𝐪 

are the wavefunctions of the initial and final electron states involved in the scattering process, with band indices n 

and m at wavevectors k and k+q, respectively. The differential perturbation operator Δ𝐪, gives the linear change in 

the quantity it operates on, when the system is perturbed with a phonon mode labeled by 𝐪𝜈 with the atoms displaced 

by the zero-point displacement amplitude [1]. The dimensionless operator Δ𝐪, carries a crystal momentum of q, and 

is explicitly defined as 

Δ𝐪, = J
ℏ

2𝜔𝐪,
N

1
O𝑀Q

𝑒QS,,(𝐪)N𝑒T𝐪⋅𝐑W
XW

Y

𝜕
𝜕𝜏QSYQS

, 

(3) 

where 𝛼 = 𝑥, 𝑦, 𝑧 labels the Cartesian directions, 𝜅 counts the atoms in the primitive unit cell, 𝑀Q  is the mass of 

the 𝜅-th atom, 𝑒QS,,(𝐪) is the 𝜅𝛼-component of the 𝜈-th eigenvector of the dynamical matrix at q, 𝜔𝐪, is the 

phonon frequency, l labels the l-th unit cell in the material, and Rl is the corresponding lattice position vector. In Eq. 

(3), the partial derivative is taken with respect to the atom coordinate 𝜏QSY of the 𝜅-th atom, along the 𝛼 direction, 

and in the l-th unit cell. DFPT calculates Δ𝐪,𝑉HI by self-consistently solving the Sternheimer equation [1,6]. The 

Bloch wavefunction has the form 𝜓6𝐤(𝐫) = 𝑁Y
ab c⁄ 𝑒T𝐤⋅𝐫𝑢6𝐤(𝐫)  where 𝑢6𝐤(𝐫)  is a lattice-periodic function. 
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Therefore, the calculation of the e-ph matrix elements at either DFPT or GWPT level is indeed done in a primitive 

unit cell, and no supercells are needed. 

Now we construct the change in the self-energy operator. A change in Σ involves changes in G and W. Here, we 

use the constant-screening approximation [19] such that Δ𝐪,𝑊 may be neglected compared to Δ𝐪,𝐺 against small 

perturbations. The validity of this approximation has been verified by using frozen-phonon calculations in a previous 

study [19] and by our own calculations. It is expected to be generally valid in semiconductors where the charges are 

bounded in bonds, and in metals with large Fermi surfaces. With this approximation, the change in the self-energy 

operator in the frequency domain reads, 

Δ𝐪,Σ(𝐫, 𝐫f; 𝜀) = 𝑖 i
d𝜀f

2𝜋 𝑒
aTlmnΔ𝐪,𝐺(𝐫, 𝐫f; 𝜀 − 𝜀f)𝑊(𝐫, 𝐫f; 𝜀f), 

(4) 

where 𝜀  and 𝜀f  are energy variables, and 𝛿 = 0D . To construct Δ𝐪,𝐺 , we need the first-order change in the 

wavefunction [6], 

Δ𝐪,𝜓6𝐤(r) =N
𝑔56,>?@ (𝐤, 𝐪)
𝜀6𝐤 − 𝜀5𝐤D𝐪

𝜓5𝐤D𝐪(𝐫)
5

, 

(5) 

where 𝜀6𝐤 and 𝜀5𝐤D𝐪 are the DFT eigenvalues. Using the knowledge that DFT eigenfunctions well approximate 

the quasiparticle wavefunctions of most materials [8], the change in the Green’s function is written as, 

Δ𝐪,𝐺(𝐫, 𝐫f; 𝜀) =N
Δ𝐪,𝜓6𝐤(𝐫)𝜓6𝐤∗ (𝐫′) + 𝜓6𝐤(𝐫)sΔa𝐪,𝜓6𝐤(𝐫f)t

∗

𝜀 − 𝜀6𝐤 − 𝑖𝛿6𝐤6𝐤

, 

(6) 

where 𝛿6𝐤 = 0D for 𝜀6𝐤 < 𝜀v  and 𝛿6𝐤 = 0a for 𝜀6𝐤 > 𝜀v at zero temperature, and 𝜀v  is the Fermi energy. In 

Eq. (6), we have used Δ𝐪,𝜀6𝐤 = 0, which is true for ∀𝐪 ≠ 0 connecting non-degenerate states (see more discussions 

in Supplemental Materials [24]).   

  In our implementation of GWPT, a plane-wave basis is used. The matrix element of Δ𝐪,Σ now becomes, 

			B𝜓5𝐤D𝐪EΔ𝐪,Σ(𝐫, 𝐫f; 𝜀)E𝜓6𝐤F 

=
𝑖
2𝜋N N zB𝜓5𝐤D𝐪E𝑒T(𝐩D𝐆)⋅𝐫EΔ𝐪,𝜓6n𝐤a𝐩FB𝜓6n𝐤a𝐩E𝑒aT(𝐩D𝐆

n)⋅𝐫nE𝜓6𝐤Fid𝜀f
𝑊𝐆𝐆n(𝐩, 𝜀′)𝑒aTlm

n

𝜀 − 𝜀6n𝐤a𝐩 − 𝑖𝛿6n𝐤a𝐩 − 𝜀′𝐩𝐆𝐆n
	

6n
 

			+ B𝜓5𝐤D𝐪E𝑒T(𝐩D𝐆)⋅𝐫E𝜓6n𝐤D𝐪a𝐩FBΔa𝐪,𝜓6n𝐤D𝐪a𝐩E𝑒aT(𝐩D𝐆
n)⋅}nE𝜓6𝐤Fid𝜀f

𝑊𝐆𝐆n(𝐩, 𝜀′)𝑒aTlm
n

𝜀 − 𝜀6n𝐤D𝐪a𝐩 − 𝑖𝛿6n𝐤D𝐪a𝐩 − 𝜀′
~, 

(7) 

where 𝐆  and 𝐆f  are reciprocal lattice vectors, 𝑛f  and p are the band index and wavevector for the internal 

summation, and 𝑊𝐆𝐆n(𝐩, 𝜀′) is the screened Coulomb interaction. In the construction of W, the full dielectric matrix 
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within the random-phase approximation [33] is used. The Hybertsen-Louie generalized plasmon-pole model [8] is 

employed in this work for the energy convolution of 𝜀f, and we note that the extension to fully frequency-dependent 

sampling techniques [34] is straightforward. The energy dependence of Δ𝐪,Σ(𝜀) is treated with the strategy that 

every matrix element is evaluated at both 𝜀6𝐤 and 𝜀5𝐤D𝐪, and the average value is taken [35]. Our calculation shows 

that the energy dependence of the matrix elements is small. Eq. (7) completes Eq. (1) to get 𝑔56,<= (𝐤, 𝐪). 

  The above formalism of GWPT has been implemented in the BERKELEYGW code [34,36], and is interfaced with 

the ABINIT code [37] which provides the DFT and DFPT calculations that generate Δ𝐪,𝑉"#(𝐫) and Δ𝐪,𝜓6𝐤(𝐫) (see 

Supplemental Materials [24]). Spatial symmetries and TRS are used to reduce the phonon q-grid [24]. The 

development of GWPT enables access to a lot of new physics where e-ph and many-electron interactions are strongly 

intertwined, especially in correlated materials. Having accurate e-ph matrix elements and their distribution across BZ 

and bands calculated using GWPT are essential ingredients of a number of important phenomena including 

superconductivity, electrical/thermal transport, electron/phonon lifetimes due to e-ph interactions, and temperature-

dependent direct/indirect optical absorptions.  

We have applied our GWPT method (within a one-shot calculation, i.e. G0W0PT) to study superconductivity in 

Ba0.6K0.4BiO3 in its cubic perovskite phase (Fig. 1(a)), which has an experimentally measured superconducting Tc of 

30 − 32	K [21-23]. Previous ab initio studies [17,38] show that the e-ph coupling calculated within DFT-LDA is too 

weak to account for such a high Tc in this material, and frozen-phonon GW calculations indicate that many-electron 

self-energy effects may enhance e-ph interactions. However, the latter was estimated from a limited study of only a 

single q-point calculation for one electronic state [17]. 

  We first perform standard DFT and DFPT calculations on Ba0.6K0.4BiO3 using the GGA functional [10]. The 

calculated Fermi surface shows a regular rounded cubic shape (Fig. 1(b)), and is strongly nested. We verify our GWPT 

method by comparing its results against reference frozen-phonon GW results at a selected high symmetry q-vector. 

We focus on the single band (labeled as n0 and highlighted in Fig. 1(c)) crossing 𝜀v , which is expected to give the 

dominant contribution to superconductivity. We are interested in 𝐪 = 𝑅, corresponding to a 2×2×2 supercell with 

atom displacements (see details of frozen-phonon calculation and more verifications in Supplemental Materials [24]). 

In the frozen-phonon calculation, the energy of the degenerate states at the BZ boundary (R’ point in Fig. 1(d)) splits 

linearly with increasing displacement (when it is small enough). The slope in the change in energy with respect to 

displacement is given by a specific single e-ph matrix element that can be fitted from finite-difference frozen-phonon 

calculations, or directly calculated with the linear-response perturbation theory in a primitive unit cell. This type of 

e-ph matrix elements that connect degenerate states is the only one that frozen-phonon GW can relatively accurately 

calculate by making supercells [17], but GWPT can access all inter-/intra-band e-ph matrix elements across the whole 

BZ with equal and high accuracy. As shown in Fig. 1(e), we find excellent agreement for this matrix element between 

frozen-phonon DFT and DFPT, and between frozen-phonon GW and GWPT, nicely verifying our GWPT method. 

Moreover, the DFPT and GWPT results are significantly different, illustrating the importance of the quasiparticle self-
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energy. 

  To study superconductivity in Ba0.6K0.4BiO3, we calculate the e-ph matrix elements that scatter quasiparticle states 

within the n0 band by performing both DFPT and GWPT calculations on an 8×8×8 k-grid (full grid) and q-grid (35 

irreducible q-points) [24]. These electronic states are coupled most strongly by phonons in the highest three optical 

branches [17,38]. As an illustration, we pick out one high-frequency oxygen stretching and breathing optical branch 

(labeled as 𝜈� [24]), and plot the distribution of the strength of the e-ph matrix element E𝑔6�6�,�(𝐤, 𝐪)E varying k 

across the BZ for selected q-points. Fig. 2(a-c) show the scatterings for 𝐪 = 𝑅  that are mostly relevant to 

superconductivity in this material. For this important phonon mode, GWPT almost uniformly enhances the value of 

the e-ph matrix elements 𝑔 as compared to DFPT with an enhancement factor of ~1.6. This is because the character 

of the states on the Fermi surface of Ba0.6K0.4BiO3 is highly isotropic [39]. However, Fig. 2(d-f) (and Fig. S3 [24]) 

show strong variances in the distribution of the e-ph matrix elements and also in the enhancement factor of GWPT 

over DFPT, due to the wavefunction character changing near the Γ point of either the initial or final states. These 

results, for the first time, systematically reveal the complex nature of many-electron renormalization of the e-ph 

interactions, demonstrating the capability and power of GWPT.  

  We evaluate the superconducting Tc of Ba0.6K0.4BiO3 using the McMillan–Allen-Dynes formula [40,41]. The e-ph 

coupling constant 𝜆 and the characteristic logarithmic-averaged phonon frequency 𝜔��� [1,40,41] are calculated 

using the e-ph matrix elements that scatter states within the n0 band for all phonon modes, at both the DFPT and 

GWPT level (Table I). The correlation-enhanced e-ph coupling constant is directly reflected in the Eliashberg function 

𝛼c𝐹(𝜔) by comparing the results from DFPT and GWPT in Fig. 3(a). The effective Coulomb parameter 𝜇∗ [1,40,41] 

is set to a reasonable physical range in Table I. DFPT severely underestimates the superconducting transition 

temperature, with the calculated Tc in the range of 0.61 − 6.1	K for 𝜇∗ in the range of 0.18 − 0.08. However, 

GWPT significantly increases Tc to the range of 28.5 − 44.8	K  for the same range of 𝜇∗  (Table I), in good 

agreement with the experimentally measured Tc of 30 − 32	K [21-23]. These results highlight the importance of 

many-electron correlation effects in e-ph interactions [17] that are well captured by the GWPT method. 

  We further study the doping dependence of the superconductivity in Ba1-xKxBiO3 (superconductivity is observed 

experimentally for 𝑥 > 0.3) from first principles, calculated using a rigid-band approximation [24]. Fig. 3(b) shows 

that the superconducting transition temperatures from GWPT nicely reproduce the size and shape of the 

superconducting half dome (however results from DFPT fail significantly) in the phase diagram observed 

experimentally [21-23]. At doping concentration smaller than 𝑥 = 0.3, the material is in an insulating CDW phase 

with strong structural distortions induced by phonon instability and the nested Fermi surface [17,23,38,42-44]. After 

𝑥 = 0.4, an increase in hole doping concentration x suppresses Tc, which is mainly due to a reduced DOS with a 

shrinking Fermi surface. With a reduced Fermi surface, the number of e-ph scattering channels decreases, weakening 

superconductivity (see Supplemental Materials [24] for more analysis). Our GWPT results, along with the recent 

direct experimental observation of isotropic s-wave superconducting gap [39], strongly support that superconductivity 
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in Ba1-xKxBiO3 originates from unusually large e-ph interactions, due to many-electron effects. 

In summary, we present the theoretical formulation, practical implementation, and application to Ba1-xKxBiO3 of 

the newly developed GWPT method. GWPT is shown to be able to systematically and accurately investigate the rich 

e-ph physics at the GW level, beyond the accessibility of any other existing ab initio methods. The powerful capability 

of GWPT demonstrates its great application potential to the study of the rich e-ph physics in a wide-range of materials, 

going beyond DFT. 
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Table I. Calculated e-ph coupling constant 𝜆, logarithmic-averaged phonon frequency 𝜔���, and superconducting 

transition temperature Tc (using the McMillan–Allen-Dynes formula) of Ba0.6K0.4BiO3. The effective Coulomb 

potential parameter 𝜇∗ is set to a reasonable physical range, giving the corresponding range of Tc. The experimentally 

measured Tc is 30 – 32 K [21,22]. 

 

 𝜆 𝜔��� (K) 𝜇∗ Tc (K) 

DFPT 0.47 488.2 0.18 – 0.08 0.61 – 6.1 

GWPT 1.14 491.3 0.18 – 0.08 28.5 – 44.8 
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FIG. 1. (a) Crystal structure of Ba0.6K0.4BiO3 in the cubic perovskite phase. (b) Calculated Fermi surface of 

Ba0.6K0.4BiO3. (c) The DFT-GGA band structure of Ba0.6K0.4BiO3. The band of interest which crosses the 𝜀v  (set to 

zero) is highlighted with blue color and labeled as n0. The state at 𝐤 = 𝑅/2 (blue dashed line) indicated by the blue 

dot has a band energy slightly below 𝜀v . (d) The DFT band structure of a 2×2×2 supercell. The R’ point corresponds 

to the 𝐤 = 𝑅/2 point at the blue dashed line in (c). The degenerate level indicated by the blue dot in (c) splits upon 

the oxygen-atom-displacement perturbation (see Supplemental Materials [24]) of 0.0171 Å. The corresponding GW 

quasiparticle energies are indicated by the red crosses. (e) Comparison of energy splitting-versus-displacement curves 

between perturbation theory and direct frozen-phonon (finite-difference) calculations.  
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FIG. 2. Distribution of the absolute value of e-ph matrix elements E𝑔6�6�,�(𝐤, 𝐪 = 𝑅)E at (a) DFPT and (b) GWPT 

level for Ba0.6K0.4BiO3, across the 𝑘� − 𝑘�  plane at fixed 𝑘� = −0.25  of the BZ (reduced coordinates). 

Calculations are performed on 8×8×8 k-grid for each q-point. (c) Line profile of (a,b) with 𝑘� = 0.0, and the path is 

indicated by the dashed line in (a,b). The enhancement factor of |𝑔<=|/E𝑔>?@E is also plotted. (d-f) Similar to (a-c), 

but with 𝐪 = 𝑅 in the 𝑘� = −0.125 plane. 
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FIG. 3. (a) Eliashberg function 𝛼c𝐹(𝜔) calculated for Ba0.6K0.4BiO3 (i.e. 𝑥 = 0.4) with e-ph matrix elements from 

GWPT and DFPT. (b) Phase diagram of Ba1-xKxBiO3. Superconducting Tc (red crosses for GWPT and blue dots for 

DFTP) is calculated with 𝜇∗ = 0.16. Experimental data are plotted as squares [23], star [21], left-pointing triangle 

[22], and right-pointing triangle [31]. Black dashed line represents the extrapolation of experimental data into doping 

range of x > 0.5, which is hard to access experimentally. From the superconducting (SC) phase towards undoped 

parent composition, for 𝑥 < 0.3, the system undergoes a structural phase transition into the non-superconducting 

CDW phase. 

 

 


