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Abstract: 

Extrinsic spinon scattering by defects and phonons instead of intrinsic spinon-spinon coupling is 

responsible for resistive magnetic heat transport in one-dimensional (1D) quantum magnets. Here 

we report an investigation of the elusive extrinsic effect in the 1D Heisenberg S=1/2 spin chain 

compound Ca2CuO3, where the defect concentration is determined from the measured specific 

heat and first-principles calculations are used to separate the lattice component of the measured 

thermal conductivity to isolate a large magnetic contribution (κm). The obtained temperature-

dependent spinon-defect and spinon-phonon mean free paths can enable a quantitative 

understanding of both κm and the spinon-induced Spin Seebeck effect.  
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Quasi one-dimensional (1D) magnetic spin systems exhibit a rich variety of physical phenomena, 

such as superconductivity [1], spin-orbital separation [2], the spin Seebeck effect (SSE) [3, 4], 

and spin entanglement [5]. Among these 1D systems, the S = 1/2 Heisenberg spin chains with 

antiferromagnetic coupling between adjacent spins are of particular interest. The elementary spin 

excitations in these systems are referred as spinons with spin = 1/2. As a result of the integrability 

of the S = 1/2 Heisenberg spin chains, intrinsic spinon-spinon coupling alone is not resistive for 

magnetic heat transport according to theoretical calculations [6, 7]. The expected divergence of 

the intrinsic 1D magnetic thermal conductivity (κm) makes the 1D spin chain an intriguing model 

system to study the celebrated Fermi-Pasta-Ulam-Tsingou (FPUT) problem [8, 9] of nonlinear 

dynamics in 1D systems. It is thus encouraging that a high magnetic contribution to the thermal 

conductivity (κ) has been measured in several 1D magnetic systems with strong exchange 

interactions [10, 11]. In these experiments, the finite κm is attributed to extrinsic spinon coupling 

with defects [12-15], grain boundaries [16], and other quasiparticles such as phonons [13, 17, 18] 

and charge carriers [19, 20]. Thus, thermal transport measurements provide a useful probe of 

fundamental spinon transport length scales and coupling mechanisms, which cannot be readily 

obtained from other established methods.   Meanwhile, for the spinon-induced SSE that was 

observed recently in the spin chain Sr2CuO3/Pt hybrid structure [3, 4], the SSE signal was found 

to be decreased by impurities in Sr2CuO3 due to the suppression of spin transport, and an unusual 

temperature dependence of the SSE was further attributed to spinon-phonon coupling [4]. The 

importance of extrinsic spinon coupling mechanisms in both magnetic heat transport and SSE has 

motivated theoretical investigations [21-23]. In contrast to empirical expressions for spin-phonon 

coupling [24], recent theoretical studies have suggested a relatively weak upper bound for spinon-

phonon coupling in the S=1/2 Heisenberg spin chains [22, 25]. However, experimental 

determinations of spinon-phonon coupling have been hindered by the lack of knowledge of the 

defect concentration, which was often taken as an adjustable fitting parameter [26], and the 
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difficulty to separate κm and the lattice thermal conductivity (κl), the latter of which had to be 

assumed to be isotropic in several previous studies of κm in the anisotropic systems [12, 24, 27].  

 

In this Letter, we present experiments that are designed to quantify extrinsic spinon coupling with 

defects and phonons in the S=1/2 Heisenberg spin chain compound Ca2CuO3, the thermal 

transport properties of which had not been studied previously. The defect concentration due to 

chain breaking is obtained from the measured specific heat (Cp), an approach that has not been 

used in previous studies of spinon thermal transport. Based on recent progress in accurate first-

principles calculations of the thermal properties [28], first-principles phonon dispersions and κl 

calculations are employed here to allow for the determination of the temperature-dependent 

spinon mean free paths (MFPs) due to defect scattering and phonon scattering via a kinetic model 

of 1D spinon thermal transport. The obtained temperature dependence of the MFP provides 

experimental support of the recent theory [25] of weak spinon-optical phonon coupling, which 

has important implications for both spinon heat transport and spinon-driven SSE.  

 

Single crystals of Ca2CuO3 have been grown by the traveling-solvent floating zone (TSFZ) 

method [29]. The crystal structure of Ca2CuO3 and an image of one of the crystals are shown in 

Figs. 1 (a) and (b), respectively. The material contains 180o Cu-O-Cu chains along b axis with a 

strong antiferromagnetic coupling energy J / kB of ~2000 K [43], where kB is the Boltzmann 

constant. Figures 1(c) and (d) show a high-resolution transmission electron microscopy (TEM) 

micrograph and electron diffraction pattern of the crystal, respectively. The lattice spacing is 

found to be about 0.61 nm, in good agreement with the d value of the (200) plane in Ca2CuO3.  
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Fig. 1. (a) Crystal structure of Ca2CuO3. (b) A photo of a Ca2CuO3 crystal grown by TSFZ 
method. (c) TEM image of the Ca2CuO3 crystal. (d) The corresponding selected area electron 
diffraction pattern of Ca2CuO3 in (c) obtained along the [001] zone axis.  

 

Figure 2(a) shows the Raman spectrum of Ca2CuO3 excited by 488 nm light at room temperature. 

The observed peak positions agree well with previous Raman studies [44-46]. The higher energy 

peaks with frequencies larger than 685 cm-1 are due to multi-phonon scattering. The magnetic 

excitation in 1D antiferromagnetic Heisenberg chains is a continuum with a lower bound 

described by a des Cloizeaux-Pearson dispersion, ܧ ሺ݇ሻ ൌ ଵଶ πܬ|sin ሺ݇ሻ|, and a higher bound 

given by the triplet excitation dispersion, ܧ ሺ݇ሻ ൌ πܬ ቚsin ሺଵଶ ݇ሻቚ, where E and k are the energy 

and wave vector of spinons, respectively [44]. The spinon continuum extends over a range from 

zero to over 6000 cm-1, as indicated by the hump-like background in the Raman spectra. A broad 

peak is also observed around 2200 cm-1, which is similar to the spinon-spinon pair states as 

reported in Sr2CuO3 [47]. The interaction between the continuum of spinons and discrete optical 

phonon states leads to Fano asymmetric line shapes in some high-energy two-phonon peaks, such 

as the one at 1401 cm-1.  
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Fig. 2. (a) The measured Raman spectrum of Ca2CuO3 at room temperature. The inset shows the 
Raman spectrum (blue curve) in comparison with phonon density of states from ab initio 
calculations (black curve). (b) Calculated phonon dispersion of Ca2CuO3. The red triangles are 
the measured Raman frequencies at 194, 306 and 470 cm-1.  

 

To calculate the phonon dispersion of Ca2CuO3, we combine a set of harmonic force constants 

obtained by a finite-difference method with a non-analytic correction to the dynamical matrix [29, 

48]. Figure 2(b) shows the resulting phonon bands, plotted along a path passing through a 

representative set of high-symmetry points in the Brillouin zone. A particularly interesting feature 

of the dispersion is the clean folding of the bands at the boundaries along the b axis (Γ-Y), 

without clear evidence of symmetry breaking, e.g. the formation of minigaps. In other words, the 

effect of the lowered symmetry due to the magnetic order on the phonon bands is not remarkable. 

This fact provides support for our use of this dispersion even above the Néel temperature later on. 

In addition, the calculated phonon density of states (DOS) is qualitatively consistent with the 

measured Raman spectra, as shown in the inset in Fig. 2(a).  

 

Figure 3(a) shows the temperature dependence of Cp for Ca2CuO3. The lattice contribution (Cl) to 

the Cp is obtained from the calculated phonon dispersion [29]. The calculated value agrees well 

with the experimental data except at the very low temperature range, as shown in Fig. 3(a). Below 

~4 K, the difference between the calculated and experimental data is due to the magnetic 

contribution.  
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At low temperatures, the Cp in the electrically insulating Ca2CuO3 consists of Cl and a 

contribution from magnetic excitations (Cm) as [27]  
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where NA is Avogadro’s constant, T is temperature, θD is the Debye temperature, x is the number 

of atoms per formula unit, and y is the number of magnetic atoms per formula unit. The fitting of 

low-T Cp in the 6 K to 15 K range according to Eq. (1) is shown in Fig. 3(b). The estimated θD of 

Ca2CuO3 is about 521 K, which is larger than the value of 448 K for Sr2CuO3 [49].  

 

 

Fig. 3. (a) Temperature dependence of Cp for Ca2CuO3 in comparison with the calculated Cl 
based on phonon dispersion (red line). The inset is the difference between the calculated phonon 
contribution and measured Cp at low temperatures. (b) A plot of Cp(T)/T vs T2. The black line is 
the fitting curve according to Eq. (1). (c) Cp(T)/T of a Ca2CuO3 crystal plotted as a function of 
temperature under various applied magnetic fields. (d) Specific heat difference ΔCp obtained by 
subtracting Cp of Ca2CuO3 under fields of 5 T and 9 T. The red line is the fitting curve according 
to Eq. (2). 

 

Figure 3(c) shows the temperature dependence of Cp under various applied magnetic fields. There 

is an obvious upturn below 2.5 K observed in this sample and another sample [29] in the absence 
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of the magnetic field. Such an anomaly could be caused by a Schottky contribution [49, 50] due 

to the uncompensated spin-1/2 at the ends of fragmented chain segments. In the presence of 

defects, such as non-stoichiometry on copper or oxygen sites or impurity phases, 1D spin chains 

can break into even-length and odd-length segments, which have an even and an odd number of 

Cu sites, respectively. If the defect concentration is nd, the average defect concentration due to the 

odd-length or even-length segments is about 0.5nd. The odd-length chains can introduce an 

additional contribution to Cp at low temperatures given by [51] 

( ) ( ) ( ) 22 ]/exp1/[/exp/)( TTTRnC gggdSch Δ+ΔΔ/2=                                    (2)  

where Δg is the energy level splitting, and R is the ideal gas constant. To determine nd, we 

analyzed the difference between the specific heat (ΔCp=Cp,H1 -Cp,H2) measured at two different 

magnetic fields. Based on this method, the effect of lattice and spinon contributions can be 

minimized [50]. The ΔCp data are fitted using the Schottky expression taking nd and Δg under 

different magnetic fields as the fitting parameters, as shown in Fig. 3 (d). The obtained fitting 

parameters are nd = 0.0039 per Cu (0.001 Å-1), Δg = 1.2 K at 5 T and Δg = 25 K at 9 T for sample 1. 

The sensitivity analysis and the Cp results for sample 2 can be found in Supplementary Material 

[29].  

 

The κ of the Ca2CuO3 crystals have been measured along all three crystallographic axes by a 

steady-state method [29], as shown in Fig. 4(a). The κ perpendicular to the spin chains (κa and κc) 

show similar absolute values and temperature dependence. However, the κ along the chains (κb) 

is much larger, especially from 70 K to 300 K. Because Ca2CuO3 is an insulator, the higher κ 

along the chains has to be attributed to either a larger κl along b, or magnetic excitations, as 

observed in other spin chain compounds SrCuO2 and Sr2CuO3 [24, 26, 27]. In addition, the peak 

κ of a polycrystalline sample is suppressed due to grain boundary scattering of phonons and 
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spinons, in agreement with recent thermal transport measurements of polycrystalline Sr14Cu24O41 

[16].  

 

 

Fig. 4. (a) Thermal conductivity of Ca2CuO3 crystals measured along the three principal 
crystallographic axes, in comparison with the κ of a Ca2CuO3 polycrystalline sample. (b) Fit to 
the κ along the a and c axes. The blue dashed line is the calculated κl along the b axis. The details 
can be found in Supplementary Material [29]. (c) The extracted κm of Ca2CuO3 along the b axis. 
(d) Calculated spinon MFP of Ca2CuO3 along the b axis. The solid and dashed lines are the fits 
according to Eqs. (4-6). 

 

We use the ab initio phonon results to calculate the κl and separate the spinon contribution. To 

focus on the intrinsic phonon transport behavior of the compound and remove the influence of the 

boundaries of our specific samples, we focus on the temperature range above ~70 K. In the 

Boltzmann transport framework, we first fit the κ along a and c axes [29], along which any 

magnetic contribution should be negligible. The good agreement between the fitting model and 

the measurement data is shown in Fig. 4(b). The κl along b axis was calculated using the obtained 

fitting parameters and phonon dispersion. Despite an anisotropic crystal structure, the obtained κl 

are relatively isotropic along the three axes. Figure 4(c) shows the obtained κm for two samples 
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by subtracting κl from κ. The κm is about 27 Wm-1K-1 at 300 K, and increases with decreasing 

temperature until the appearance of a peak κm value of 50-60 Wm-1K-1 at about 90 K.  

 

We now determine the spinon MFP (lm) by analyzing the κm. The κm in a 1D system can be 

expressed as ∫= dklvc kmkmkmm ,,,κ   and vm is the spinon group velocity, vm= πJb/2ħ, where b is the 

distance between the spins along the chains, and ħ is the reduced Plank constant. For kBTاJ, the 

heat-carrying spinons exist in significant number only in the vicinity of the band minima [10, 52]. 

Therefore, it is adequate to assume that lm=lm,k in order to obtain a relation between the MFP of 

spinons and the κm of a 1D system as [26, 53] 

m
Bs

m TkN
l κ

π 2
3h=                                                                                 (3) 

where Ns = 2/ac is the number of spin chains per unit area. In addition, the two-spinon continuum 

is not considered here since most of the excited spinons exist in the vicinity of the band minima 

for temperatures below 300 K [10, 52]. As shown in Fig. 4(d), lm of Ca2CuO3 is about 800 Å at 70 

K for sample 1, corresponding to about 210 lattice spacings of b. With increasing temperature, lm 

is reduced and approaches a constant value of ~ 100 Å at 300 K for both samples.  

 

In the temperature range for this study, heat transport by spinons is mainly limited by the spinon-

defect scattering and spinon-optical phonon scattering processes [25]. The J is a function of the 

Cu-Cu separation that can be perturbed by thermal lattice vibrations. This perturbation provides 

the mechanism for coupling phonons to the spinons [21]. A recent theory has expressed the MFP 

due to the spinon-phonon scattering (lsp) as [25]  
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where gsp is the spinon-phonon coupling constant, and ω0 is the frequency of the phonon mode.  
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In addition, spinons can also be affected by impurities, which perturb the superexchange coupling 

locally. In effect, the defects can act like breaches in the spin chain. The corresponding MFP is an 

average length of a defect-free chain, which is given by [25] 

dd nl =−1 .                                                                                 (5) 

To model the MFP of spinons, we have combined spinon-phonon and spinon-defect scattering 

according to Matthiessen’s rule as 

 111 −−− += dsp lll .                                                                           (6) 

In addition, we have assumed that the spinons are scattered by two optical phonon modes: ω0,1 = 

6.25 THz and ω0,2 = 19.17 THz [25]. In our analysis, these two frequency values are the 

representative average values determined according to the effect of phonon modes on the degrees 

of freedom of Cu atoms along b axis [29]. The first mode represents a broad distribution of 

phonon energy (E) centered at E/kB = 300 K. The latter corresponds to the stretching mode at 

E/kB = 920 K. The solid lines in Fig. 4(d) are the fits of the lm for Ca2CuO3. With J / kB = 2200 K, 

the obtained optimum fitting parameters are nd = 0.00099 Å-1, gsp,1 = 0.023, and gsp,2 = 0.16 for 

sample 1, and nd = 0.0012 Å-1, gsp,1 = 0.025, and gsp,2 = 0.16 for sample 2. Sensitivity analysis [29] 

shows that these are unique fits to the data. The larger nd for sample 2 can explain its lower κm 

below ~150 K. The obtained nd agrees well with the value of 0.001 Å-1 derived from the Cp data. 

In comparison, prior experimental and theoretical studies [21, 24, 27] on analyzing the spinon-

phonon scattering MFP assumed a gsp ≥ 1.  Based on the perturbative treatment of spinon-phonon 

scattering, however, recent theoretical studies [22, 25] indicate that the upper limit on the spin-

phonon coupling in 1D cuprates is ~0.2. Our experimental findings are consistent with the recent 

theoretical work, confirming the relative weak coupling between spinons and phonons in 1D 

Heisenberg S =1/2 spin chain compounds. Moreover, based on the calculated MFP due to 

different scattering processes, defect scattering is dominant below ~50 K, which can explain the 

suppressed SSE signal in low-purity Sr2CuO3 below ~50 K [4]. In comparison, the spinon 
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scattering is mainly limited by phonon scattering above ~50 K. Despite its small coupling 

constant, the ω0,1 mode is more effective in scattering spinons than theω0,2 mode below 100 K. 

The ω0,2 mode starts to play a more important role at higher temperatures.  

 

These experiments and analysis yield quantitative insight into spinon coupling with defects and 

phonons in single crystals of Ca2CuO3, which is considered to be a model system for strongly 

anisotropic spin-1/2 Heisenberg antiferromagnets. Spin chain breaking due to the presence of 

defects results in the observed Schottky anomaly in Cp at low temperature. The magnetic field-

dependent Cp indicates a defect concentration of 0.001 Å-1. Meanwhile, determination of κl from 

the phonon dispersion has enabled its separation from the measured κ to obtain the large 

magnetic contribution κm. Based on the knowledge of the defect concentration and κm, the spinon 

MFP is obtained from a kinetic model of 1D spinon transport, which decreases from ~800 Å at 70 

K to ~100 Å at 300 K. The MFP results suggest that defect scattering is the leading mechanism 

below 50 K while optical phonon scattering is dominant at high temperature, and provide 

experimental support of the recent theory of weak spinon-phonon coupling. Moreover, the 

methods presented in this work can be applicable to probe fundamental length scales in other 

low-D magnetic systems.   
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