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We propose a novel mechanism for a nonequilibrium phase transition in a U(1)-broken phase of
an electron-hole-photon system, from a Bose-Einstein condensate of polaritons to a photon laser,
induced by the non-Hermitian nature of the condensate. We show that a (uniform) steady state of
the condensate can always be classified into two types, namely, arising either from lower or upper-
branch polaritons. We prove (for a general model) and demonstrate (for a particular model of
polaritons) that an exceptional point where the two types coalesce marks the endpoint of a first-
order-like phase boundary between the two types, similar to a critical point in a liquid-gas phase
transition. Since the phase transition found in this paper is not in general triggered by population
inversion, our result implies that the second threshold observed in experiments is not necessarily
a strong-to-weak-coupling transition, contrary to the widely-believed understanding. Although our
calculation mainly aims to clarify polariton physics, our discussion is applicable to general driven-
dissipative condensates composed of two complex fields.

PACS numbers:

The phenomenon of macroscopic condensation has
been one of the principal topics in modern condensed
matter physics and optics [1]. The central example
is, of course, Bose-Einstein condensation (BEC), which
has been observed in various systems, ranging from
atomic gases [2, 3], liquid 4He [4], exciton-polaritons [5–
8], magnons [9–11], photons [12], to plasmonic-lattice-
polaritons [13]. In these systems, thermalization plays a
crucial role in achieving macroscopic occupation of the
lowest energy level. A photon laser [14, 15], in contrast,
is a nonequilibrium condensate, where the population in-
version in an optical gain medium induces macroscopic
coherence.

The semiconductor microcavity system [5–8] provides
a unique opportunity to study similarities and differences
of these two classes of condensation phenomena [16],
since it can exhibit both [17], by tuning the pump power.
At low pump power, where the strong light-matter cou-
pling enables hybrid light-matter quasiparticles called
polaritons to form, their thermalization is efficient due to
relaxation processes such as stimulated scattering. This
makes it possible, once the pump power exceeds a certain
threshold, for the system to exhibit macroscopic coher-
ence among polaritons to turn into a polariton-BEC [5].
At even higher power, in contrast, the system operates in
the weak light-matter coupling regime as a vertical-cavity
surface-emitting laser (VCSEL), a type of a photon laser,
with electrons and holes acting as a gain medium. Inter-
estingly, a number of experiments [18–29] have observed a
second threshold between the former and latter regimes,
which has been traditionally interpreted as a strong-to-
weak coupling phase transition.

This two-threshold-behavior presents a theoretical
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FIG. 1: (Color online) Proposed phase diagram of a driven-
dissipative electron-hole-photon gas, in terms the photon de-
cay rate κ and the pump power P . (a) Blue detuning. (b) On
resonance. (c) Red detuning. “−(+)” represents the “−(+)”-
solution phase, “N” represents the normal phase, “EP” is the
exceptional point, and gR is the Rabi splitting. The thick
(thin) solid line represents the phase boundary in the con-
densed phase (between the normal and the condensed phase).

challenge, however. The normal-to-lasing transition is
associated with breaking a U(1) symmetry, but the
polariton-BEC is already in a U(1)-broken phase. Thus,
there seems to be no good reason to expect a second
phase transition. Indeed, to our knowledge, all theories
to date predict a crossover [30–34].

In this Letter, we propose a novel mechanism for a
phase transition in the U(1)-broken phase, triggered by
the non-Hermitian nature of the out-of-equilibrium con-
densate. Starting from the equation of motion of a mi-
croscopic model, we show that the steady states of a two-
component condensate of electron-hole pairs and photons
can formally be classified into two types of solutions, cor-
responding to condensation into different branches of the
polariton spectrum. We find that an exceptional point
(EP), where the two solutions coalesce [35–43], may ap-
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FIG. 2: (Color online) Model driven-dissipative electron-hole-
photon gas. The system is attached to an electron-hole bath
and a photon vacuum. Electrons (holes) are incoherently
supplied to the system with the rate γe(h). In the system,
the injected electrons (“e”) and holes (“h”) repulsively (e-e,
h-h) and attractively (e-h) interact with the Coulomb po-
tential Vk−k′ = e2/(2ǫ|k − k

′|). The electrons and holes
pair-annihilate (create) to create (annihilate) cavity-photons
(“ph”) via the dipole coupling g. The created photons in the
cavity leak out to the vacuum with the decay rate κ.

pear due to the non-Hermiticity of the equation of mo-
tion. We prove and demonstrate that this is the end-
point of a first-order-like phase transition line between
the two solutions, analogous to a critical point in a liquid-
gas phase diagram. Based on these results, we propose
a phase diagram of an electron-hole-photon system de-
picted in Fig. 1. Our theory points out the possibility of
both the crossover and phase transition from polariton-
BEC to VCSEL depending on the experimental settings
such as detuning and the pump power, and provides a
possible new interpretation to the second threshold as
a signal of a lower to upper branch transition. These
physics, although derived mainly with microcavity po-
laritons in mind, should be applicable to other driven-
dissipative many-body systems with coupled order pa-
rameters, e.g. atoms in a double-well potential [44–
46], a supersolid realized in two-crossed cavity [47], or
a plasmonic-lattice-polariton BEC [13].

We use a microscopic model schematically shown in
Fig. 2 [32–34, 48], which has been shown to capture
both the essential physics of the BEC state and the VC-
SEL [49], as well as to give a semiquantitative agree-
ment [48] with photoluminescence experiments [21, 50–
52]. The system is composed of electrons, holes, and
cavity photons, which are coupled to an electron-hole
bath and a photon vacuum. Electrons (holes) are in-
coherently pumped to the system from the bath at a
rate γe(h). The injected electrons and holes Coulomb-
interact with each other and create (annihilate) photons
by pair-annihilation (creation). The photons leak out to
the vacuum with the decay rate κ, driving the system
into a non-equilibrium steady state. The explicit expres-
sion for the Hamiltonian H is given in the Supplemental
Material (SM) [53].

We apply the Keldysh Green’s function method [54]

to the model. As shown in SM [53], the dynamics of the
electron-hole dipole polarization pk(r, t) and the electron
(hole) density nk,σ=e(h)(r, t) obeys the generalized Boltz-
mann equation [55],

i~∂tpk(r, t) =
[

εk,e + εk,h −
~
2∇2

4meh
− 2iγ

]

pk(r, t)

−
∑

k′

Lk,k′(r, t)∆k′(r, t), (1)

∂tnk,σ(r, t) + vk,σ · ∇nk,σ(r, t)

= −
2γσ
~
nk,σ(r, t) + Ik,σ(r, t). (2)

Here, εk,e(h) = ~
2
k
2/(2me(h)) + Eg/2 is the dispersion

of the electron (hole) in the conduction (valence) band,
where me(h) is the effective mass of electrons (holes).
Eg is the energy gap of the semiconductor material.
meh = 2memh/(me + mh) is twice the reduced mass
of an electron and a hole, and vk,e(h) = ~k/me(h).
We have introduced the order parameter ∆k(r, t) =
∑

k′ Vk−k′pk′(r, t)−gλcav(r, t) describing the condensed
phase, where λcav(r, t) =

〈

a(r, t)
〉

is the coherent cavity-
photon amplitude (where a(r, t) is the annihilation op-
erator of a cavity-photon), Vk = e2/(2ǫ|k|) is the two-
dimensional Coulomb interaction (ǫ is the dielectric con-
stant), and g is a dipole coupling between carriers (elec-
trons and holes) and photons. The coupling of the sys-
tem to the bath causes the dephasing/decay of pk(r, t)
(nk,σ(r, t)) with the rate 2γ (2γσ), where γ = (γe+γh)/2.
Lk,k′(r, t) and Ik,σ(r, t) in Eqs. (1) and (2), determined

microscopically from the self-energy Σ̂ and the Green’s
function Ĝ in the Nambu-Keldysh formalism (see SM [53]
for their explicit form), describe many-body interaction
effects such as exciton formation, collision, phase-filling,
etc., as well as the electron-hole pumping and its ther-
malization.
The electron-hole dynamics is coupled to the dynamics

of the coherent cavity-photon amplitude, given by the
Heisenberg equation [53],

i~∂tλcav(r, t) =
〈

[a(r, t), H ]
〉

=
[

~ωcav −
~
2∇2

2mcav
− iκ

]

× λcav(r, t) + g
∑

k

pk(r, t), (3)

where ~ωcav is the cavity-photon energy, and mcav is
a cavity-photon mass. In analogy to λcav(r, t), we de-
fine for later use a complex electron-hole pair amplitude
λeh(r, t) by pk(r, t) = λeh(r, t)φk(r, t),

∑

k |φk(r, t)|
2 =

1, Arg[
∑

k φk(r, t)] = 0 [56].
Our main assumption in what follows is that the sys-

tem supports spatially uniform, steady-state solutions
given by the ansatz [30–34, 48, 57, 58] λcav(eh)(t) =

λ0cav(eh)e
−iEt/~, where E is the (real) condensate emis-

sion energy. Although, in real systems, there is always a
chance that such uniform steady state destabilizes, e.g.
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due to the dynamical instability that leads to pattern
formation [59–61] or the occurence of many-body local-
ization [62], we ignore such possibilities in this Letter.
In this formulation, λ0cav(eh) corresponds to the photonic

(excitonic) component of the macroscopic many-body
wave function.
With this ansatz, Eqs. (1) and (3) satisfies a non-

Hermitian eigenvalue equation,

Â

(

λ0cav
λ0eh

)

=

(

hcav g0
g̃∗0 heh

)(

λ0cav
λ0eh

)

= E

(

λ0cav
λ0eh

)

, (4)

where hcav = ~ωcav − iκ, g0 = g
∑

k φk, g̃∗0 =
g
∑

k,k′ φ∗kLk,k′ , and heh =
∑

k[(εk,e+ εk,h− 2iγ)|φk|
2−

∑

p,k′ Vk−pφ
∗

kφpLk,k′ ]. We emphasize that Eq. (4) is a
steady state condition that determines the macroscopic
variables λ0cav(eh) and is analogous to a gap equation, not

to be confused [63] with the equations for determining the
polariton spectra in the normal state [6]. For instance,
the trivial solution λ0cav = λ0eh = 0 describes the normal
state.
Eqs. (1)-(3) must be solved self-consistently for a given

set of microscopic parameters to determine the quantities
that enter Eq. (4) [69]. However, we can draw a num-
ber of strong conclusions by analyzing the structure of
the latter alone. The matrix Â can be diagonalized with
eigenvectors u− = (−ϕ+Ω

2 ,−g̃∗0)
T, u+ = (g0,

−ϕ+Ω
2 )T,

and corresponding eigenvalues E± = [hcav + heh ± Ω]/2.
Here, Ω =

√

ϕ2 + 4g̃∗0g0, ϕ = hcav − heh, and we take
ReΩ ≥ 0 (i.e. ReE+ ≥ ReE−) without loss of general-
ity. In the diagonal basis, Eq. (4) reads (E− − E)λ0− =

(E+ − E)λ0+ = 0, where (λ0−, λ
0
+)

T = Û(λ0cav, λ
0
eh)

T with

Û−1 = (u−,u+). From this relation, we see that λ0−
and λ0+ cannot be non-zero simultaneously as long as
E− 6= E+, allowing us to classify the non-trivial solu-
tions into two types: (λ0− 6= 0, λ0+ = 0, E = E−) and
(λ0+ 6= 0, λ0− = 0, E = E+), which we label “−” and
“+”, respectively. This property is essentially different
from similar time-dependent coupled-damped oscillators
equations, i∂t(ψ1, ψ2)

T = Ĥcdo(ψ1, ψ2)
T (where ψ1 and

ψ2 are complex numbers and Ĥcdo is a non-Hermitian
2 × 2 matrix), which are often discussed in the field of
non-Hermitian quantum mechanics [36–43], where the
transient dynamics generally allows for a superposition
of eigenmodes.
Now we show our main result of this Letter: A first-

order-like phase transition between the two solutions can
occur and the exceptional point (EP) Ω = 0, where u±

coalesce such that Â only has a single eigenvector, marks
the endpoint of the phase boundary. The proof is pre-
sented in SM [53] and we sketch the argument here. In-
troducing the complex splitting between E− and E+,

Λ ≡ Ω2 = ϕ2 + 4g̃∗0g0, (5)

we divide the complex Λ-plane into the regions I-IV,
according to the strong-coupling condition [70] δ̃2 +
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FIG. 3: (Color online) (a) Definition of regions I-IV. In region
II (III) in the weak-coupling regime, only the “+(−)”-solution
is allowed. On the dotted line, the solution type switches
without being accompanied by discontinuity. (b) Schematic
description of how a polariton-BEC evolves to a VCSEL, in
terms of Λ. The system exhibits a phase transition (crossover)
from a polariton-BEC to a VCSEL when Λ changes counter-
clockwise (clockwise) around EP.

4Re[g̃∗0g0] ≥ 4κ2 (where δ̃ = Reϕ) and the sign of ImΛ,
as shown in Fig. 3(a) [71]. Due to the restriction of real
E, only one solution type can exist in the weak-coupling
regime (regions II and III), which switches label with no
physical discontinuity between regions II and III. On the
other hand, both (distinct) solution types may coexist
in the strong-coupling regions I and IV. Thus, starting
from the “−”-solution in region III, while no disconti-
nuity would be seen when entering region II directly,
changing parameters in a route that encircles the EP
(III→IV→I→II) requires a phase transition in order to
end up in the required “+”-solution in region II, proving
the result [72].
To make contact between the above general arguments

and real physical systems, we explicitly solve for the
polariton-BEC and VCSEL. In the dilute equilibrium
limit (κ = 0, γ → 0+, nk,σ ≪ 1) where the polariton-
BEC is realized, Eq. (4) reduces to [53]

ÂBEC =

(

~ωcav gR
g∗R ~ωX

)

, (6)

in the Hartree-Fock-Bogoliubov approximation (HFBA)
[32–34, 48], which is justified in this limit [73]. Here,
~ωX = Eg − Ebind

X is the exciton energy (Ebind
X is

the exciton binding energy) and gR = gφX(r = 0)
is the Rabi splitting, where φX(r) is an exciton wave
function obeying the Schrödinger equation

∫

dr′[−δ(r −
r
′)~2∇′2/meh − V (r − r

′)]φX(r
′) = −Ebind

X φX(r) [73].
The eigenvalues, given by EBEC

± = [~ωcav + ~ωX ±
√

δ2 + 4|gR|2]/2, are just the lower and upper polariton
energies [6] (where δ = ~ωcav − ~ωX is the conventional
detuning parameter). Comparison of the free energies of
the two solutions tells us that the “−”-solution always
emerges.
When the photon decay rate κ is turned on, a phase

transition can occur. In the so-called polariton laser
regime, where the gas is dilute enough to maintain the
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FIG. 4: (Color online) Calculated emission energy E in the

case Â = ÂGP as a function of the photon decay rate κ/gR
and the (coherent) photon number n0

ph = |λ0
cav|

2. The solid

line projected onto the n0
ph-κ/gR plane is a phase boundary.

The star represents the EP. We set δ/gR = 0.1, ~ωX/gR =
−2, UX/gR = 0.1.

polariton picture, the equation of motion is governed by
the driven-dissipative Gross-Pitaevskii (ddGP) equation
[74] generalized to the two-component case, given by [53],

ÂGP =

(

~ωcav − iκ gR
g∗R ~ωX + UX|λ

0
eh|

2 + iRX

)

, (7)

where UX is an exciton-exciton interaction strength and
RX > 0 describes the net gain of exciton coherence
that feeds the condensate [75], arising microscopically
from processes such as stimulated scattering. This gives
EGP

± = [~ωcav+~ωX+UX|λ
0
eh|

2−i(κ−RX)±ΩGP]/2 with

ΩGP =
√

δ̃2 + 4|gR|2 − (κ+RX)2 − 2iδ̃(κ+RX), where

δ̃ = ~ωcav − (~ωX + UX|λ
0
eh|

2) is an effective detuning
that takes into account the Hartree shift of the exciton
component. One finds an EP (ΩGP = 0) at δ̃ = 0 and
gR = RX = κ, giving rise to a phase transition in its
vicinity.
We demonstrate this by explicitly solving Eq. (4)

when Â = ÂGP. Figure 4 shows the calculated emis-
sion energy E as a function of the decay rate κ and the
coherent photon number n0

ph = |λ0cav|
2 (which roughly

corresponds to the pump power), in the blue detuning
case δ/gR = 0.1. At κ < gR, we find that the “−”-
solution disappears at a critical value of the pump power,
resulting in a phase transition signaled by the disconti-
nuity in E. In constructing the phase diagram, we have
assumed that we always realize the lowest-energy solu-
tion. Relaxing this assumption would shift the position
of the phase boundary in detail but not its endpoint.
As expected, the phase boundary ends at the EP (where
κ = gR). When κ > gR, the “−”-solution crosses over
to the “+”-solution. The fact that a phase transition
arises within the ddGP (where the polariton picture still
holds) suggests that the second threshold observed in ex-
periments does not necessarily imply a strong-to-weak-
coupling transition to a photon laser. More discussion
on this aspect can be found in the SM [53].
At high pump power where the system operates as a

VCSEL, it has been shown within the HFBA [32–34] that

Eqs. (1)-(3) reduce to the semiconductor Maxwell-Bloch
equations [15], with Lk,k′ = δk,k′Nk = δk,k′(1 − nk,e −
nk,h) and

ÂVL =

(

~ωcav − iκ g0
g̃VL∗
0 ~ωVL

eh − 2iγ

)

, (8)

where ~ωVL
eh =

∑

k[(εk,e+ εk,h)|φk|
2−

∑

p Vk−pφ
∗

kφpNk]

and g̃VL∗
0 = g

∑

k φ
∗
kNk. A crucial difference compared

to the polariton laser case, Eq. (7), is the condensate
feeding mechanism. The electron-hole gain RX(> 0)
present in the polariton laser is absent in the VCSEL,
since the thermalization process does not work efficiently.
Instead, the condensate is fed by stimulated emission
arising from the population inversion Nk < 0. As a re-
sult, it is straightforward to show [53] that ReΛVL < 0
holds when ImΛVL = 0 in the weak-coupling regime [76],
allowing both the solution types to appear and smoothly
switch labels with one another.
Figure 3(b) summarizes the above discussion in terms

of the complex splitting Λ. Here, the polariton-BEC
regime lies on the real axis ΛBEC = δ2+ |gR|

2 > 0. Thus,
starting from the polariton-BEC with “−”-solution, by
changing parameters such that Λ evolves clockwise or
counter-clockwise around the EP, the system exhibits a
crossover or phase transition, respectively, into a VCSEL.
We connect our discussion in Λ-space to the physical

phase diagram in Fig. 1. Starting from the polariton-
BEC (κ = 0), as the decay rate κ is turned on such that
the system turns into a polariton laser (Eq. (7)), one
sees from the expression of ΛGP = Ω2

GP that ImΛ in-
creases (decreases) from zero in the case of an effective
red (blue) detuning δ̃ < 0 (> 0), where Λ evolves counter-
clockwise (clockwise). Since the increasing pump power
P usually shifts the effective detuning to red (note that
δ̃ = δ − UX|λ

0
eh|

2), we predict that there always exists a
phase boundary between the polariton-BEC and VCSEL
in red detuning, δ < 0 [panel (c)]. On the other hand, in
blue detuning, δ > 0, δ̃ may switch its sign to negative
when P increases. Whether this sign change occurs at
a positive or negative ReΛ determines whether the evo-
lution of Λ may reverse to counter-clockwise. Thus, we
conjecture that, in the blue detuning case, there exists
a phase boundary with an endpoint, as shown in panel
(a). On resonance, δ = 0, since we know from Eq. (7)
that the EP is at κ = gR in the dilute limit |λ0eh| → 0

(δ̃ = δ = 0), the EP lies on the boundary between the
normal and the condensed phase [panel (b)].
Physically, when the effective detuning becomes more

red, the lower branch becomes more photonic [6], hinder-
ing condensation to the lower branch as photonic losses
increase and gain from the excitonic component becomes
small. Meanwhile, the upper branch becomes more exci-
tonic, which makes the system favor the latter and even-
tually driving the phase transition. In contrast, as long
as the system stays in effective blue detuning, it remains
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in the “−”-solution, exhibiting a crossover.

We close our Letter by commenting on the connection
to experiments. Most reported experiments exhibiting
the two-threshold-behavior are done on resonance or in
red detuning with a small decay rate κ < gR [18–28],
while a single-threshold-behavior to a photon laser has
been observed at a large blue detuning [17]. These results
are consistent with our proposal (more detailed discus-
sion is provided in SM [53]) which makes us hopeful that
an experimental encirclement of the EP is within reach.
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[9] Ch. Rüegg, N. Cavadini, A. Furrer, H. -U. Güdel, K.
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Gather, Sci. Adv. 2, e160666 (2016).
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[31] M. H. Szymańska, J. Keeling, and P. B. Littlewood, Phys.
Rev. B 75, 195331 (2007).

[32] M. Yamaguchi, K. Kamide, T. Ogawa, and Y. Ya-
mamoto, New J. Phys. 14, 065001 (2012).

[33] M. Yamaguchi, K. Kamide, R. Nii, T. Ogawa, and Y.
Yamamoto, Phys. Rev. Lett. 111, 026404 (2013).

[34] M. Yamaguchi, R. Nii, K. Kamide, T. Ogawa, and Y.
Yamamoto, Phys. Rev B 91, 115129 (2015).

[35] T. Kato, Perturbation theory of linear operators

(Springer, Berlin, 1966).
[36] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80,

5243 (1998).



6

[37] W. D. Heiss, Eur. Phys. J. D. 7, 1 (1999).
[38] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A.
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