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Self-organization and anomalous transport in gradient-drift driven turbulence in partially mag-
netized plasmas with crossed electric and magnetic fields is demonstrated in two-dimensional fluid
simulations. The development of large scale structures and flows is shown to occur as a result of the
inverse energy cascade from short wavelength instabilities. The turbulence shows complex interac-
tion of small scale modes with large scale zonal flows modes, vortices, and streamers resulting in
strongly intermittent anomalous transport which significantly exceed the classical collisional values.
The turbulence driven secondary instabilities and large scale structures are shown to dominate the
anomalous electron current. Such anomalous transport and structures are consistent with a number
of experimental observations in laboratory plasmas.

Partially magnetized plasmas with crossed electric and
magnetic fields is common occurrence in many laboratory
plasma devices [1–4] and space conditions [5]. Due to
large spatial and temporal scale separation, (ρe � L �
ρi where ρe, ρi are electron and ion Larmor radii respec-
tively, L is a system size) the nature of plasma instabil-
ities and nonlinear physics in such plasmas is different
from situations in which both components (electron and
ions) are magnetized. Many incarnations of such plasmas
show development of various instabilities [1, 6, 7] leading
to turbulence, structures, and anomalous electron cur-
rent. Despite wide occurrence, nonlinear physics of such
plasmas, in particular, the nature of the instabilities, tur-
bulence saturation, and associated anomalous transport
is not well understood.

The picture of basic eigen-modes and instabilities in
partially magnetized E × B plasmas is somewhat dif-
ferent from the standard case of fully magnetized plas-
mas. The standard electron drift waves [8] are absent
in plasmas with unmagnetized ions, but there exists the
specific density gradient eigen-mode with the frequency
ω = ωcikyLn [9], where Ln = (n−1

0 ∂xn0)−1 is the den-
sity gradient length scale, ky is the wavevector in the
direction of the density gradient and perpendicular to
the magnetic field B0 = B0ẑ, ωci = eB0/mic is the ion
cyclotron frequency. This quasineutral mode exists for
purely transverse propagation with wavevector parallel to
the magnetic field kz = 0 (contrary to the standard drift
waves in fully magnetized plasma). For smaller scales
and higher frequencies, the inertial response of electrons
becomes important resulting in the lower-hybrid modes
ω = ωLH ≡

√
ωceωci, where ωce is electron cyclotron
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frequency. The model can be extended into the third di-
mension with appropriate boundary conditions along the
magnetic field [10]. The local linear theory however pre-
dicts the strongest instabilities for modes with kz = 0,
which are therefore subject of our studies here.

The transverse electron current due the electron E×B
drift is a major driver of instabilities in partially mag-
netized crossed-fields plasmas. In the long wavelength
regime, when the electron inertia can be neglected, the
reactive instability occurs for E0 · ∇n0 > 0, which is
usually called the collisionless Simon-Hoh instability [11–
14]. For shorter wavelength, when the electron inertia is
involved, the lower-hybrid mode can be destabilized by
plasma gradients as well as collisions [15–17].

In this paper we study the turbulent regimes of
gradient-drift and lower-hybrid modes using the non-
linear reduced fluid model [16]. In this model, two-
dimensional (in the x, y plane perpendicular to the mag-
netic field) nonlinear equation for electrons is

(∂t + u0∂y)η = n0v∗∂y
eφ

Te
− ν(η − n) + ωceρ

2
e

{
eφ

Te
, η

}
, .

(1)
Here η = n + ρ2e

(
n0∇2eφ/Te −∇2n

)
is the general-

ized vorticity, n, n0 are respectively the perturbed and
equilibrium electron density, φ is a perturbed electro-
static potential, u0 is the equilibrium electron E × B
drift, ν is an electron-neutral collision frequency, {f, g} =
∂xf∂yg − ∂yf∂xg is a Poisson bracket.

The velocity of unmagnetized ions is represented as
Vi = v0x̂−∇χ, where v0 is the equilibrium ion flow, and
χ is the ”potential” function describing the perturbed
ion velocity. Then, the ion continuity and momentum
balance equations are

(∂t + v0∂x)n = (n0 + n)∇2χ+∇n · ∇χ, (2)

(∂t + v0∂x)χ = c2s
eφ

Te
+

1

2
(∇χ)2. (3)
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The equilibrium electric field, equilibrium ion velocity,
and the density gradient are along the x̂ axis, and the
equilibrium electron E × B drift is in the ŷ direction.
Therefore, Cartesian coordinates (x, y, z) correspond to
the axial, azimuthal, and radial directions of the cylin-
drical geometry of the Hall thrusters and magnetrons,
(z, φ, r)→ (x, y, z), and for cylindrical Penning discharge
configuration with the axial magnetic field, (r, φ, z) →
(x, y, z), respectively.

For further studies, we use the following dimensionless
parameters Ln = 48.8ρe, u0 = 241.8cs, v0 = 3.72cs,
ν = 0.28ωLH ,

√
mi/me = 427, which roughly correspond

to Hall thruster parameters [18], e.g. such as E = 2×104

V/m, B = 200 G, Te = 17.7 eV, v0 = 15 km/s, u0 = 106

m/s, Ln = 2.45 cm, ν = 2.3 MHz.
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FIG. 1: Linear growth rate. Insert shows ky = 0 slice.

From Eq. (1)-(3), the linear dispersion equation [16]
for the long wavelength Simon-Hoh instability and [13,
14] and short wavelength lower hybrid modes [17, 19] is:

c2sk
2

(ω − v0kx)2
=

v∗ky + ρ2ek
2(ω − u0ky + iν)

ω − u0ky + ρ2ek
2(ω − u0ky + iν)

. (4)

For our parameters, the growth rate is shown in Fig. 1
where the most unstable modes have γ = Im(ω) ∼ 4ωLH .
It is important to note that the dispersion relation (4)
also reveals a pure axial linear instability with kx 6= 0,
ky = 0 of the resistive nature Refs. [20–22]. For our pa-
rameters, the growth rate of the axial instability is of or-
der γ = 0.15ωLH , and it is shown in the one dimensional
slice ky = 0 on the insert of Fig. 1. As it is discussed be-
low, despite the relatively slow growth rate, the resistive
axial instability plays an important role in 2D nonlinear
dynamics and turbulent transport.

Nonlinear Eqs. (1)-(3) are solved with double-periodic
boundary conditions and for constant density gradient
(as well as for Ln = ∞), and constant v0, u0, using
BOUT++ framework employing FFT along y and finite
difference with WENO reconstruction along x together
with CVODE time integration solver [23]. Temporal and
spatial resolutions were varied to achieve convergence and
to resolve linear spectrum predicted by the dispersion
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FIG. 2: Anomalous axial electron current.

equation (4) with error less then 10%. The hyperviscos-
ity of fourth order (∂t ∼ ∇4) was added to simulations
to avoid numerical instability, but its amplitude was cho-
sen sufficiently small in order not to change significantly
linear or nonlinear stages of simulations. All simulations
(unless stated otherwise) were performed until the non-
linear saturation of the wave energy is reached [16, 24].
The linear growth benchmarking against analytical the-
ory were reported in Ref. [16, 24].

One of the main results of our study is the first-
principle demonstration of significant turbulent (anoma-
lous) electron current driven by gradient-drift turbu-
lence of azimuthal modes in E×B plasmas shown in
Fig 2. It shows axial current evolution for different
parameters: (a) — for full system; (b) — in the ab-
sence of ion flow and collisions (v0 = ν = 0); (c) —
in the absence of equilibrium density gradient (Ln =
∞). As is evident from Fig. 2a, the turbulent elec-
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tron current is orders of magnitude larger than the clas-
sical (collisional) axial current. The anomalous cur-
rent Je due to turbulent E×B drift was evaluated as
je = −ecn∂yφ/B, Je =

∫
jedxdy/(LxLy), and shown in

Fig. 2 [25] in units of classical collisional current Jν cor-
responding to classical conductivity σν = e2n0ν/meω

2
ce.

It can be recast in units of the effective Hall parame-

ter, Ω = (ωLH/ν) (mi/me)
1/2

(Je/Jν)−1, thus Ω ' 15
for Je ∼ 100Jν , which is generally consistent with ex-
perimental values in Hall thrusters and results of PIC
modeling [26].

To investigate the nature and the role of large scale
structures, we have performed simulations turning off the
resistivity and ion velocity, by setting ν = 0 and v0 = 0,
thus removing the linear resistive axial instability, which
leads to a noticeably smaller anomalous current (shown
in Fig 2b).

The gradient-drift instability in nonlinear stage pro-
duces large scale azimuthally elongated (along ŷ axis)
shear zonal flows, kx � ky, which subsequently form
large scale vortices via mechanism similar to Kelvin-
Helmholtz instability as shown in Figs. 3a and 3b. Those
structures occur on the length scale significantly larger
than the scale of the most unstable linear modes in Fig. 1
which indicates the inverse cascade predicted analytically
for partially magnetized plasmas in Ref. [27]. The vor-
tices are quasi-stable, i.e. they exist for period of time
comparable to the largest growth rate (t ∼ ω−1

LH), then
collapsing back into shear flows and reapearing again at
larger and larger length scale (up to the size of the sim-
ulation box).

FIG. 3: Shear flows and vortices in simulation with
v0 = 0 and ν = 0.

FIG. 4: Coexisting small scale fluctuations, large scale
vortices and axial modes in simulation with ν = 0.

FIG. 5: Generation of azimuthal modes by axial modes
in simulation without density gradient Ln =∞.

Nonlinear formation of zonal flow type axial structures
due to the inverse cascade is further enhanced by the lin-
ear and nonlinear instabilities of the axial modes, which,
in presence of the ion flow v0 6= 0, produced by a fi-
nite electron-neutral collision frequency ν [22] or as a
secondary instability of the anomalous electron current
produced by small scale gradient-drift fluctuations.

The axial modes in absence of the linear axial electron
current (Jν ∼ σν ∼ ν = 0) are shown in Fig. 4. In this
case, the nonlinear axial current (created by small scale
turbulence) becomes unstable via the mechanism simi-
lar to the linear axial resistive instability with ν 6= 0.
The exponential growth of the axial modes driven by the
anomalous current was demonstrated earlier [24]. As a
result, large amplitude axial mode is present together
with azimuthal drift waves and vortices. Note the high
amplitude axial variations in generalized vorticity visi-
ble in 3D rendering of Fig. 4. In simulations involving
axial modes, the axial system size Lx was increased to al-
low larger wavelengths of the nonlinearly generated axial
modes. As it was shown in Ref. [24] the axial modes are
saturated by nonlinear terms in ion equations (2) and (3).

The turbulent electron current in the presence of ax-
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ial modes is larger compared to the case when the lin-
ear axial modes were turned off, compare Fig. 2a with
Fig. 2b. It is important to note that axial modes itself
do not produce any axial electron transport and can af-
fect it only via the excitation and enhancement of the
azimuthal modes. To confirm the generation of the az-
imuthal modes (and thus the axial anomalous current) by
the axial modes we have performed the simulations where
underlying gradient-drift modes are removed (Ln = ∞)
and axial mode linear instability is initially the only mode
driven by collisions. Note that the remaining instability
of resistive azimuthal modes [17] is much weaker than the
axial instability so that in the linear phase (t < 90ω−1

LH),
only axial modes are present in the system. Our simula-
tion shows the slow excitation and nonlinear saturation
of the axial mode, consistent with results of Ref. [22].
When the axial mode grows to large amplitude, the axial
density variations (induced by axial mode) become suf-
ficiently large for the excitation of secondary azimuthal
gradient-drift waves for t ∼ 100ω−1

LH , as shown in Fig. 5
with anomalous current shown in Fig. 2c.

Thus, our nonlinear simulations have revealed the fol-
lowing phenomena and stages in the nonlinear evolution
of the system (1)-(3): (i) the most unstable small scale
gradient-drift waves are excited and grow exponentially
in time; the nonlinear turbulent state is formed domi-
nated by nonlinear effects from the Poisson bracket term
in (1); the large scale shear flows form due to the in-
verse cascade with subsequent development of vortices
(similar to Kelvin-Helmholtz instability); the turbulence
significantly enhances the axial electron conductivity; (ii)
the anomalous electron current triggers the axial insta-
bility and axial modes grow; (iii) axial modes saturate
into a high amplitude axial structures [22]. The satura-
tion mechanism for axial modes is nonlinearities in the
ion equations and therefore their saturation amplitude
are much larger than that of gradient-drift waves. As
a result, the axial modes significantly change the den-
sity and electric field profiles, affecting the underlying
gradient-drift instabilities.

The generalized vorticity profile for full equations is
shown in Fig. 6a. We also report the existence of quasi-
stable axial streamers existing up to tωLH ∼ 5 in our
simulations. Streamers are axially elongated and az-
imuthally localized structures providing large contribu-
tion to the axial anomalous current. The large streamer
is shown in Fig. 6b. We should note that streamers also
appear in the absence of axial modes (v0 = 0).

In this letter, we investigated the nonlinear gradient-
drift and lower-hybrid instabilities in partially magne-
tized plasmas with crossed electric and magnetic fields.
These modes are expected to play a central role in for-
mation of long wavelength structures and transport in
various devices employing E×B configurations for elec-
tric propulsion [1, 3, 28], material processing [2, 6, 29],
and cylindrical Penning type devices [4, 30, 31]. The
large scale structures (shear zonal flows and vortices)
are produced via the inverse cascade of the energy flow

FIG. 6: Shear flows, vortices, axial modes, and
streamers in simulation of full system.

from short wavelength modes. The turbulence self-
organization in our simulations is further enhanced by
coupling to the axial modes produced by linear and non-
linear mechanisms. This coupling is twofold: (i) the
anomalous current produced by nonlinear interaction of
azimuthal gradient-drift modes results in a strong drive
of the axial instability, thus enhancing its growth; (ii)
the axial modes modify the density and electric pro-
files, providing feedback on turbulent azimuthal modes.
The ensuing turbulence demonstrate the complex inter-
actions of large scale shear flows, vortices, and streamers
that produce anomalous electron current orders of mag-
nitude higher than the collisional current. This suggests
that turbulent transport observed in E×B experiments
[32, 33] and kinetic simulations [26, 34] can be explained
as a result of turbulence driven by gradient-drift modes.
A notable feature of the anomalous current in presence
of large scale structures is its intermittent and blobby
nature[32], as it is also shown in our simulations, Fig. 2.
Such anomalous current cannot credibly be parameter-
ized by the enhanced transport coefficients, such as mo-
bility, but rather requires avalanche like approaches as in
self-organized-criticality models with transport event at
different scales [35].

We have confirmed [24] that fluctuation energy is well
saturated in our simulations, the anomalous transport,
however, as shown in Figs. 2a and 2b is not necessarily
saturated at long time scales. We consider this as another
manifestation of the intermittency. In part, it could be
attributed to inadequate saturation mechanisms of large
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scale structures in our model. The model assumptions of
constant gradients should be revised at later times, when
coherent structure sizes becomes comparable to the sim-
ulation box size. Therefore, the long time evolution of
anomalous current will be affected by the device geome-
try and self-consistent modification of the mean profiles
(gradients) which are not accounted for in considered
model. It should be noted that the simplified slab ge-
ometry used in this work does not describe properly the
finite and curvature effects. Such effects are expected to

be important for large scale structures of the order of the
box size, however the general conclusions regarding the
inverse cascade and anomalous transport are expected to
remain valid.
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