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CMB lensing from current and upcoming wide-field CMB experiments such as AdvACT, SPT-3G
and Simons Observatory relies heavily on temperature (vs. polarization). In this regime, foreground
contamination to the temperature map produces significant lensing biases, which cannot be fully
controlled by multi-frequency component separation, masking or bias hardening.

In this letter, we split the standard CMB lensing quadratic estimator into a new set of optimal
‘multipole’ estimators. On large scales, these multipole estimators reduce to the known magnification
and shear estimators, and a new shear B-mode estimator. We leverage the different symmetries of
the lensed CMB and extragalactic foregrounds to argue that the shear-only estimator should be
approximately immune to extragalactic foregrounds. We build a new method to compute separately
and without noise the primary, secondary and trispectrum biases to CMB lensing from foreground
simulations. Using this method, we demonstrate that the shear estimator is indeed insensitive to
extragalactic foregrounds, even when applied to a single-frequency temperature map contaminated
with CIB, tSZ, kSZ and radio point sources. This dramatic reduction in foreground biases allows us
to include higher temperature multipoles than with the standard quadratic estimator, thus increasing
the total lensing signal-to-noise beyond the quadratic estimator. In addition, magnification-only and
shear B-mode estimators provide useful diagnostics for potential residuals.

INTRODUCTION

Weak lensing of the CMB measures the projected mat-
ter distribution throughout the observable Universe, and
is one of the most promising probes of dark energy, mod-
ified gravity and neutrino masses [1, 2]. As the mea-
surement precision increases, systematic biases become
more important. While CMB-S4 [3] lensing data should
be polarization-dominated in the future, in the coming
decade, CMB lensing measurements from AdvACT [4],
SPT-3G [5] and Simons Observatory [6] will rely heav-
ily on temperature. In this regime, extragalactic fore-
grounds such as the cosmic infrared background (CIB),
the thermal Sunyaev-Zel’dovich effect (tSZ), the kine-
matic Sunyaev-Zel’dovich effect (kSZ) and radio point
sources (PS) can produce biases much larger than the
statistical errors, if unaccounted for [9–12]. Mitigation
methods have been proposed. For example, masking in-
dividually detected or know sources can decrease the bias,
and techniques such as bias hardening [10, 14] are effec-
tive when the foreground trispectrum is known. Multi-
frequency component separation [12] can reduce or null
specific foregrounds components. However, a minimum-
variance multifrequency analysis only leads to a modest
reduction in foregrounds, and simultaneously nulling tSZ
and CIB comes at a large cost, increasing the noise power
spectrum by a factor as large as 50 [6]. Furthermore,
multi-frequency component separation has no effect on
the kSZ, which alone causes a significant lensing bias [11].
New methods are therefore needed in order to produce
unbiased lensing measurements from CMB temperature
maps.

In this letter, we explore a new approach, leveraging
the differing symmetries of the lensing deflections and

extragalactic foregrounds in order to separate them. In-
deed, as we argue below, extragalactic foregrounds are
degenerate with lensing magnification (local monopole
distortion of the power spectrum), but not with lens-
ing shear (local quadrupolar distortion) or higher order
multipoles. Throughout this letter, we consider lensing
measurements from CMB temperature only, rather than
polarization, although we expect a similar approach to
work in polarization too.

LENSING MULTIPOLE ESTIMATORS

Estimators

Weak lensing modulates the 2d CMB power spectrum,
creating local distortions. These distortions to the power
spectrum can be decomposed into a monopole (m = 0)
corresponding to an isotropic magnification or demagnifi-
cation, a quadrupole (m = 2) corresponding to shearing,
as well as higher order even multipoles. Mathematically,
the presence of a fixed lensing convergence κL, creates
off-diagonal correlations in the observed CMB tempera-
ture T :
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The angular dependence of the response function fκ can
be expanded in multipoles of the angle θL,` between `
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which defines the m−th multipole response function fmL,`.
These can be used in Eq. 1 to obtain an estimator of κL,
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from multipole m only. Explicit minimum variance ex-
pressions are given in the Supplemental Material, and
Fig. 1 shows that the monopole and quadrupole esti-
mators contain most of the lensing signal-to-noise, al-
lowing us to neglect estimators with m > 2 in prac-
tice. To allow a fast evaluation with FFT, we can re-
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FIG. 1. Noise power spectrum of the lensing convergence κ,
reconstructed with the optimal quadratic multipole estima-
tors. Monopole (m = 0) and quadrupole (m = 2) estimators
contain most of the lensing signal-to-noise. The multipole
estimators are uncorrelated for L . 300.

place these non-separable optimal multipole estimators
by their limits in the ‘large-scale lens regime’, where
large-scale (L . 300) lensing modes are reconstructed
from small-scale (` & 300) temperature modes. In this
regime, our optimal monopole and quadrupole estimators
reduce to the magnification1 and shear E-mode estima-
tors of [16–18] (see also [16, 20–22]), as well as a new
shear B-mode estimator:
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∫
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1 To be consistent with the optical lensing literature, this estimator
should be called ‘convergence’ instead of ‘magnification’. Since
we already use the name ‘convergence’ to designate the lensing
field κ that is being reconstructed, we decided to call shear and
magnification the two distinct effects, to avoid confusion.

These estimators should only be interpreted as measur-
ing magnification and shear in the large-scale lens regime
(L� `). However, they remain unbiased lensing estima-
tors on all scales. They match the harmonic-space ver-
sion of [17, 18], after normalizing them to be unbiased
and with the substitution T`+L/2TL/2−` → T`TL−` to

allow fast evaluation with FFT. We further substitute the
lensed CMB power spectrum to C0, as is customary for
the QE [7, 8]. As shown in the Suppl. Mat. Fig. 1, the
magnification and shear estimators are optimal on large
scales (L . 300), where they have the same noise as the
optimal m = 0 and m = 2 estimators, are roughly uncor-
related, and recover the signal-to-noise of the standard
quadratic estimator (QE). In the Born approximation,
the shear B-mode estimator has zero response to lensing
and provides a useful null test. As we show below, it also
allows us to detect and subtract any potential ‘secondary
foreground bias’ (defined below).

Statistical signal-to-noise

Throughout this letter, we consider an upcoming stage
3 (‘CMB S3’) experiment, with 1.4′ beam FWHM and
7µK ′ sensitivity at 148GHz. We apply the lensing es-
timators to the single-frequency map at 148GHz, with-
out any multi-frequency component separation. For the
lensing weights, we include the lensed CMB, all the fore-
grounds of Sec. and the detector white noise in the total
power spectrum.

Intuitively, Eq. (4) means that magnification can only
be measured from a non-scale-invariant power spectrum
(d ln `2C0

` /d ln ` 6= 0), and shear only from a non-white
power spectrum (d lnC0

` /d ln ` 6= 0). The unlensed CMB
power spectrum is neither scale-invariant nor white, so a
similar signal-to-noise is expected for the shear and mag-
nification estimators. Indeed, as shown in Fig. 2, the
lensing noise in shear and magnification is comparable.
This is convenient: shear and magnification estimators
can be compared as a consistency check for residual fore-
grounds. At fixed `max,T , the total signal-to-noise in ei-
ther shear or magnification is about 60% of that in the
QE, including the cosmic variance. However, as we show
below, the shear estimator is less affected by foregrounds,
allowing to use `max,T = 3500 instead of `max,T = 2500
for the QE. This allows to recover all of the signal-to-
noise lost by discarding the magnification part. To op-
timize further, we build a ‘hybrid estimator’ by forming
the minimum-variance linear combination of the magni-
fication measured from `max,T = 2000 (where foreground
contamination is small) and the shear measured from
`T = 30 − 3500. This minimum-variance linear com-
bination takes into account the correlation between the
estimators. This ‘hybrid’ estimator, shown in Fig. 3,
increases the SNR on the amplitude of lensing by 14%
compared to the QE with `max,T = 2500, from 93 to 106.
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A similar hybrid estimator, constructed from the multi-
pole estimators rather than from the magnification and
shear, will increase the SNR even further.

A spike in the noise power spectrum can be seen for
the magnification and shear estimators in Fig. 2, but not
for the multipole estimators in Fig. 1. This is a result of
the approximate lensing weights in Eq. (4), only valid in
the large-scale lens regime, which cause these estimators
to have zero response to lensing (and thus infinite noise)
at the location of the spike.
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FIG. 2. Lensing reconstruction noise per lensing multipole
for the standard quadratic estimator (QE, red), the magnifi-
cation (green), shear E-mode (blue) and B-mode (cyan) esti-
mators, when using temperature modes ` = 30−3500. Below
multipoles of a few hundred, the shear E and magnification
estimators are roughly uncorrelated, and recover the QE when
combined, taking into account their noise covariance. Shear
E and shear B have similar noise for low multipoles, which
makes the shear B a useful null test to compare to shear E.

Expected sensitivity to foregrounds

Extragalactic foregrounds dominate the lensed CMB
on small scales (` & 3000), where they are well described
by a one-halo or shot noise term, i.e. by a set of un-
clustered emission profiles (e.g., halos) or point sources
(e.g., galaxies inside azimuthally-symmetric halos). If
the emission profiles are azimuthally-symmetric, the lo-
cal foreground power spectrum on a small patch of the
sky is isotropic, i.e. function of ` = |`| instead of `. As
a result, the corresponding foreground component modi-
fies the observed power spectrum monopole (m = 0), but
not its higher multipoles. This should bias the magnifi-
cation estimator, and therefore the QE, but not the shear
estimator.

If the foreground sources are halos with random in-
dependent ellipticities, or are point-like but clustered in
elliptical filaments with random orientations, they pro-
duce extra noise in the shear estimator, analogous to the
shape noise in galaxy lensing. On the other hand, if the
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FIG. 3. Total signal-to-noise on the amplitude of the lens-
ing power spectrum, including cosmic variance, as a function
of the maximum temperature multipole `max,T , for fsky =
1. Different colors correspond to the different estimators.
Dashed lines indicate when foreground biases are larger than
the statistical uncertainty, even after masking point sources
detected at 5σ. At fixed `max,T , the signal-to-noise in either
shear or magnification is about 60% of the signal-to-noise of
the QE. However, as we show below, keeping the foreground
bias below the statistical error requires `max,T = 2500 for the
QE (red dot, S/N = 70), compared to `max,T = 3500 for the
shear estimator (blue dot, S/N = 77): hence the final shear
signal-to-noise exceeds that of the QE by 10%. A hybrid es-
timator QE(` ≤ 2000) & shear(` = 2000 − 3500) is shown in
purple, and increases the signal-to-noise by 37% compared to
the standard QE(` ≤ 2500).

ellipticities of foreground halos or of their clustering (fil-
aments) are aligned with the local tidal field, they will
produce a bias to the shear estimator, analogously to in-
trinsic alignments in galaxy lensing (see App. D in [27]).

In summary, any extragalactic foreground biases the
magnification estimator and the QE, whereas only fore-
grounds with specific anisotropies (intrinsic alignments)
affect the shear estimators. In the next section, we test
this intuition with realistic foreground simulations.

SENSITIVITY TO FOREGROUNDS:
SIMULATIONS

Method

We use simulated maps of lensing convergence, CIB,
tSZ, kSZ and radio PS at 148GHz from [23], obtained
by painting polytropic baryonic profiles on a large-box
(L = 1 Gpc/h) N-body simulation. Crucially, the gas
density and temperature profiles given to a halo are not
spherical, but instead follow the triaxiality of the local
matter tidal tensor at the position of the halo. As a
result, these simulations include a reasonable level of
‘shape noise’ and ‘intrinsic alignment’. A halo catalog
from this N-body simulation is also available. We re-
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weight these halos to match the redshift distribution of
the LSST gold sample, with i-band magnitude i < 25.3
[24] (dn/dz ∝ (z/z0)2e−z/z0/(2z0) with z0 = 0.24), and
obtain a projected ‘galaxy’ number density map δg. The
‘galaxy bias’ measured from this map roughly matches
the expected value b(z) = 1 + 0.84z [24]. These maps
have two crucial features: they are realistically corre-
lated with each other, and have a reasonable level of
non-Gaussianity. The simulations also include the ef-
fect of anisotropic clustering of halos inside filaments,
of anisotropic halo profiles, including possible intrinsic
alignments. Our goal is to compute the foreground bi-
ases to the cross-correlation of CMB lensing with galaxies

C
κδg
L and to the CMB lensing auto-spectrum CκκL .

We subtract the mean emission in each foreground
map, then rescale the maps by factors of order one to
match the power spectrum model of [25] (0.38 for CIB,
0.7 for tSZ, 0.82 for kSZ, 1.1 for radio PS). Following
[9], we then mask the point sources with flux & 5mJy
in each foreground map. To do so, we match-filtered
the foreground maps with a profile corresponding to the
beam and a noise determined by the total power spec-
trum (lensed CMB plus all foregrounds). The resulting
foreground power spectra are shown in the Suppl. Mat.
Fig 3.

In principle, one should add all the foreground maps to-
gether to get the total bias, including their correct cross-
correlations. However, component separation will reduce
each foreground differently. For this reason, we analyze
each foreground map separately. This should allow the
reader to quantify the foreground bias for any compo-
nent separation method by rescaling our values appropri-
ately. In what follows, our lens reconstruction relies on
temperature multipoles ` = 30 − 3500. To measure the
lensing bias due to the foregrounds, we decompose the
observed sky temperature Tobs into the lensed primary
CMB TCMB, the foregrounds Tf and the detector noise
Tnoise: Tobs = TCMB + Tf + Tnoise. We write Q[TA, TB ]
for any quadratic estimator (QE, shear or magnification)
applied to maps TA and TB , symmetrized in A↔ B.

As shown in [9–11], biases to the CMB lensing auto
power spectrum CκκL arise from the foreground bispec-
trum (‘primary’ and ‘secondary’ terms [10]), and from
the foreground trispectrum. We evaluate them as follows:

1) The primary bispectrum term is computed as
2〈Q[Tf , Tf ] κCMB〉, as in [9–11].

2) The secondary bispectrum could in principle be
computed as 4〈Q[Tf , TCMB] Q[Tf , TCMB]〉. However,
this auto-correlation is biased by the large noise of
Q[Tf , TCMB], which would have to be subtracted ac-
curately. We therefore propose and implement a new
method to avoid this issue. We Taylor-expand the lensed
CMB map TCMB = T 0 +T 1 + ... in powers of κ, and com-

pute the quantity 8〈Q[Tf , T
0] Q[Tf , T

1]〉 2. This works
because the quadratic estimators are by construction un-
biased when applied to the pair (T 0, T 1), to first order
in lensing. This greatly reduces the noise, and this is
a cross-correlation so no noise subtraction is needed (no
N0, or higher order bias N i).

3) For the trispectrum term, we compute
〈Q[Tf , Tf ] Q[Tf , Tf ]〉, and subtract the Gaussian
contribution (which is a part of N0) analytically, as in
[9, 10].

For the cross-correlation with tracers C
κδg
L , only the

primary bispectrum is present, and without the combi-
natorial factor 2: 〈Q[Tf , Tf ] δg〉. The secondary bispec-
trum and trispectrum terms only act as a source of noise
on this cross-correlation, not bias.

Results

The resulting foreground biases for the cross-

correlation C
κδg
L are shown in Fig. 4. Despite the mask-

ing of point sources, the CIB, tSZ, kSZ and radio PS
lead to very large and statistically significant biases for
the QE and the magnification estimators. Again, multi-
frequency component separation may be used to null the
tSZ bias, or reduce the CIB or radio PS biases. However,
reducing all these biases simultaneously typically causes a
large noise increase. Furthermore, multi-frequency anal-
yses have no effect on the kSZ bias. These foreground
biases are therefore a major concern for the standard
QE. On the other hand, no foreground bias is detected
in the shear estimator. This is the main result of this let-
ter: even when applied to a single-frequency temperature
map, the shear estimator measures only the quadrupo-
lar distortions from lensing, and is therefore immune to
foregrounds. It is remarkable that this holds even for a
single frequency map out to `max,T = 3500, where the
temperature modes are foreground dominated. Our QE
tSZ bias in Fig. 4 is smaller than in [12, 13], which can be
explained by our scaling down of the tSZ map to match
the power spectrum model of [25], our masking, and the
different redshift of our galaxy catalog. Our CIB bias is
slightly larger than found in [13].

For the lensing auto-spectrum CκκL , the primary, sec-
ondary and trispectrum biases discussed in the previ-
ous section are shown in Fig. 5. At low (resp. high)
lensing multipoles, the primary (resp. trispectrum) bias
dominates. In both cases, a large bias is seen in the
QE and magnification estimator, while the shear esti-
mator is unbiased. Our primary and trispectrum fore-

2 Another way to evaluate the secondary bispectrum term would
be 〈Q[Tf , TCMB]Q[Tf , TCMB]−Q[Tf , T

′
CMB]Q[Tf , T

′
CMB]〉 where

T ′CMB is constructed from the same unlensed CMB realization
as TCMB but lensed by an independent κ realization.
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FIG. 4. Relative bias to the cross-correlation between CMB
lensing and the LSST gold galaxy sample, as a function of
lensing multipole L, when including temperature multipoles
` = 30 − 3500 at 148GHz. This foreground bias corresponds
to the ‘primary bispectrum’ term. The grey boxes indicate
bins of lensing multipoles with the corresponding statistical
error bars for the standard quadratic estimator (lensing noise
plus cosmic variance, identical in each panel). The foreground
biases are much larger than the statistical error bars for both
the standard quadratic estimator and the magnification es-
timator, whereas they are barely measurable for the shear
estimator.

ground biases are consistent with the results of [9] for
the CIB and tSZ, and slightly smaller than what found
in [11] for the kSZ, due to our rescaling of the kSZ map
and the slightly different lensing weights. We compute
the secondary foreground bias separately. This term is
smaller than the primary and trispectrum term, but non-
negligible for L of a few hundred. Here, the shear esti-
mator alone does not improve over the QE and magni-
fication estimators. This occurs because the shear sec-
ondary bias introduces a cos2(2θ), which makes it sen-
sitive to the foreground monopole power. However, the
shear B-mode estimator has the same secondary bias and
no response to lensing: subtracting it from the shear E-
mode therefore cancels the secondary bias, at the cost of
an increased noise. Overall, the shear estimator dramat-
ically reduces the foreground biases. In the absence of
any foreground cleaning, the shear estimator allows to in-
crease the range of multipoles used in the lens reconstruc-
tion from `max,T ≈ 2500 for the QE, to `max,T ≈ 3500
for shear-only. Multi-frequency foreground cleaning may
help increase the range of usable multipoles – and thus
the statistical power – for all estimators. The proposed
shear B-mode subtraction may further improve the range
for the shear E-mode estimator. We leave a detailed op-
timization study to future work.

CONCLUSION

For current and upcoming CMB experiments such as
AdvACT, SPT-3G and Simons Observatory, CMB lens-
ing reconstruction will rely heavily on temperature. Fore-
ground emission is known to contaminate temperature
maps from which lensing is reconstructed, and therefore
produce very significant biases, leading to wrong conclu-
sions about cosmology if unaccounted for. Modeling and
subtracting these bias terms is likely to be very chal-
lenging, due to the complex baryon physics involved in
producing them. While some foregrounds can be nulled
(tSZ) or reduced (CIB, radio PS) by a multi-frequency
analysis, at the cost of a degradation in map noise, other
foregrounds cannot (kSZ).

In this letter, we therefore explored a different ap-
proach, by using the approximate isotropy of the extra-
galactic foreground 2d power spectra, and splitting the
QE into optimal quadratic multipole estimators.

In the large-scale lens regime, they reduce to the
isotropic magnification and anisotropic shear E-mode es-
timators of [16–18], and a new shear B-mode estimator.
The shear estimator enables a remarkable reduction of
foreground biases, compared to the QE, even when ap-
plied to a single-frequency temperature map. As a result,
the shear estimator allows to increase the range of mul-
tipoles used in the lens reconstruction to `max,T ≈ 3500,
instead of `max,T ≈ 2500 for the QE, while keeping fore-
ground biases within the statistical uncertainty. Overall,
the signal-to-noise in shear with `max,T = 3500 is very
similar to that in QE with `max,T = 2500. The shear es-
timator thus provides a robust way of measuring lensing.
Component separation may allow the use of higher mul-
tipoles for all estimators. On the other hand, the mag-
nification estimator is highly sensitive to foregrounds, so
comparing magnification and shear provides an excellent
diagnostic for foreground contamination. The shear B-
mode estimator constitutes an additional null test, and
allows to further reduce foreground biases. Quantifying
the size of the higher order biases such as N (1) and N (2)

for the shear and magnification estimators will be impor-
tant.

Further optimization is possible, by combining differ-
ent estimators with different `max,T . For instance, a
hybrid estimator magnification(` ≤ 2000) & shear(` ≤
3500) improves the lensing signal-to-noise by 14% com-
pared to the standard QE(` ≤ 2500).

Better approximations to the optimal multipole es-
timators than the shear and magnification estimators
may yield further improvements in signal-to-noise. A
promising approach would be to replace the derivatives
in Eq. (4) by free functions of ` to be optimized. Future
CMB lensing data from CMB S4 should be polarization-
dominated. The shear and magnification estimators can
be generalized to polarization [18], and may bring im-
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provements there too. This would have implications for
precision delensing, in order to isolate primordial tensor
modes. Similar foreground biases occur in lens recon-
struction from intensity mapping [26, 27] (e.g., the ‘self-
lensing bias’ for CIB), and the shear estimator may allow
to reduce them [26, 27]. Finally, the split into magnifica-
tion and shear E and B-modes may also help detect resid-
ual Galactic foregrounds or beam ellipticity. We leave the
exploration of these promising avenues to future work.
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FIG. 5. Relative foreground bias on the CMB lensing power
spectrum, as a function of lensing multipole L, when includ-
ing temperature multipoles ` = 30 − 3500 at 148GHz. The
grey boxes indicate bins of lensing multipoles with the cor-
responding statistical error bars for the standard quadratic
estimator (lensing noise plus cosmic variance). Top: primary
bispectrum bias, dominant at low L. Middle: trispectrum
bias, dominant at high L. Bottom: secondary bispectrum
bias.
The dominant biases (primary and trispectrum) are much
larger than the statistical error bars for the QE and mag-
nification estimator, and are barely measurable for the shear
estimator. The secondary bispectrum bias is smaller, and
similar in size for all estimators. The secondary bispectrum
bias is identical for the shear E and B estimators, making the
difference of the two an unbiased lensing estimator.
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