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A large number of symmetry protected topological (SPT) phases have been hypothesized for
strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases however often
demands fine-tunings hard to reach experimentally. And the lack of analytical solutions hinders the
understanding of their many-body wavefunctions. Here we show that two kinds of SPT phases nat-
urally arise for ultracold polar molecules confined in a zigzag optical lattice. This system, motivated
by recent experiments, is described by a spin model whose exchange couplings can be tuned by an
external field to reach parameter regions not studied before for spin chains or ladders. Within the
enlarged parameter space, we find the ground state wavefunction can be obtained exactly along a
line and at a special point, for these two phases respectively. These exact solutions provide a clear
physical picture for the SPT phases and their edge excitations. We further obtain the phase diagram
by using infinite time-evolving block decimation, and discuss the phase transitions between the two
SPT phases and their experimental signatures.

The ground states of strongly interacting many-body
systems of quantum spins can differ from each other by
three mechanisms: symmetry breaking, long range entan-
glement (topological order), or symmetry fractionaliza-
tion [1]. Symmetry-protected topological (SPT) phases
are equivalent classes of states that share the same sym-
metries but are topologically distinct [2–4]. They only
have short-range entanglement, are gapped in the bulk,
but have edge/surface states protected by symmetries.
Recent years have witnessed significant advancement in
our understanding of fermionic and bosonics SPT phases.
For example, for one-dimensional (1D) spin systems,
a complete classification of possible SPT phases was
achieved based on group cohomology [1]. A plethora
of SPT phases are shown to be mathematically allowed.
When translational symmetry, inversion, time reversal
(TR) and D2 symmetry of spin rotation π are all present,
there are in total 210 possible SPT phases in 1D [1].

Only a small fraction of these SPT phases have been
identified to arise from realistic spin models that are ex-
perimentally accessible. The best known example is the
Haldane phase of spin-1 antiferromagnetic Heisenberg
chain [5]. For spin-1/2 systems, spin ladders, J1 − J2
chains with frustration (for example with antiferromag-
netic next-nearest-neighbor interaction J2 > 0) have
been extensively studied [6–10], but the parameter space
explored was focused on solid state materials such as
copper oxides [6]. For example, four SPT phases D±,
VCD± have been discussed in spin-1/2 chains [11]. And
Ref. [12] found four SPT phases t0, tx, ty, tz in a spin-1/2

ladder and proposed ways to realize them using coupled
quantum electrodynamics cavities. The t0 and tz phase
were also shown to exist in narrow regions for a ladder
of dipole molecules [13]. In quantum gas experiments, a
noninteracting SPT phase was observed with fermionic
ytterbium atoms [14], and an interacting bosonic SPT
phase was realized using Rydberg atoms [15].

In this paper, we propose and solve a highly tun-
able 1D spin-1/2 zigzag lattice model describing polar
molecules [16–18] (or magnetic atoms [19]) localized in
a deep optical lattice. This model has several appeal-
ing features as a platform to realize SPT phases. (1) It
is inspired by recent experimental realization of spin-1/2
XXZ model using polar molecules in optical lattices [16–
18]. (2) The relative magnitude and sign of the exchange
interactions are relatively easy to control by tilting the
dipole moment using an electric field to reach a large,
unexplored parameter space. The frustration resulting
from dipole tilting has been recently shown to give rise
to possible spin liquid states in 2D [20–23]. (3) The bulk
of its phase diagram is occupied by two SPT phases, the
singlet-dimer (SD) and even-parity dimer (ED) phase.
(4) The exact ground state wave function for each SPT
phase is found and their nature is firmly established by
exploiting the characteristic of the lattice as a chain of
edge sharing triangles. The spin-1/2 edge states of an
open chain are also derived. (5) It reveals a novel direct
phase transition between the SPT phases.

The model. Our model, illustrated in Fig. 1, is a spin
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1/2 XXZ model on the one-dimensional zigzag chain,

H =
∑
i,j

Ji,j [S
x
i S

x
j + Syi S

y
j + ηSzi S

z
j ]. (1)

Here i, j are the site indices, and η is the exchange
anisotropy. The exchange coupling is restricted to near-
est neighbors (n.n.) and next nearest neighbors (n.n.n.),

J2i,2i+1 = J1, J2i−1,2i = J ′1, Ji,i+2 = J2. (2)

So the n.n. exchange alternates between J1 and J ′1 (see
Fig. 1). In the special case of η = 1, the model reduces to
the J1-J2-type Heisenberg model with bond alternation
(J1 6= J ′1). In the literature, the XXZ chain or J1-J2
Heisenberg chain have been extensively studied [6, 24]. It
is known that when J2 > 0 (assuming η > 0), the system
is frustrated. The model has a rich phase diagram on
the plane spanned by the two independent parameters:
η and J1/J2 [6]. With a small bond alternation δ =
|J1 − J ′1| � |J1|, |J ′1|, there are four SPT phases [11,
25]. The parameter space of this model, e.g. for J2 < 0
and strong bond alteration δ ∼ |J1|, |J ′1|, have not been
explored [26].

The model Eq. (1) naturally arises for polar molecules
such as KRb and NaK localized in deep optical lattices
[16–18]. Here the spin 1/2 refers to two chosen rotational
states of the molecules, and the exchange interaction Ji,j
is dictated by the dipolar interaction between the two
dipoles, which depends on their relative position rij =

ri−rj as well as d̂, the direction of the dipoles controlled
by external electric field [20, 21]. Explicitly, Ji,j = J [1−
3(r̂ij ·d̂)2]/r3ij where J > 0 sets the overall exchange scale.
For the zigzag lattice, we assume the external field is in
plane, and makes an angle θ with the y-axis (Fig. 1). We
further assume the lattice spacing is large and neglect
longer range interaction beyond n.n.n.. It follows that

J1 = J [1− 3 cos2(θ + γ)],

J ′1 = J [1− 3 cos2(θ − γ)], (3)

J2 = J [1− 3 sin2 θ]/8 sin3 γ.

In general, the zig-zag angle γ can be tuned. Here we
keep γ = 30◦ fixed, so the zigzag lattice consists of a
chain of identical, equilateral triangles. Note that itiner-
ant dipoles [27] and atoms [28, 29] on the zig-zag lattice
have been studied. Here we focus on spin models of local-
ized dipoles. The anisotropy η can be tuned by varying
the strength of the electric field [16, 20].

Tuning the exchange couplings. By titling electric field
(and the dipole moment d̂), one sweeps through the pa-
rameter space of H and gain access to nontrivial SPT
phases. It is sufficient to consider θ ∈ [0, 90◦]. The result-
ing exchange coupling J1, J

′
1, J2 are shown in Fig. 1(b).

As θ is varied, the system goes through a few points stud-
ied before in the literature. For example, at θ = 0◦,
J1 = J ′1 = −1.25J2, the ground state was shown to
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FIG. 1. (a) Dipolar molecules localized on a zigzag chain.
The dipoles point to the d direction controlled by external
electric field, forming an angle θ with the vertical direction.
The exchange couplings J1, J ′1 and J2 are defined in Eq. (2),
(b) The variation of the exchange couplings as functions of θ
(γ = 30◦). (c) This highly tunable model contains a few lim-
its, some of which studied before in the literature. (I) a J1−J2
chain [6]; (II) a coupled antiferromagnetic ladder [7]; (III) a
bond alternating chain [8]; (V) a ferromagnetic ladder [10];
(VI) weakly coupled ferromagnetic chains. The solid line and
dashed line stand for positive (antiferromagnetic) and nega-
tive (ferromagnetic) coupling respectively. The point (IV),
where J ′1 = 2J2 < 0 and J1 > 0, is exactly solvable. Here the
thick dashed line indicates |J ′1| > |J2|.

be the so-called Haldane dimer phase [6]. At θ ∼ 25◦,
J1 = 0, the zigzag chain reduces to a ladder of ferromag-
netically coupled antiferromagnetic chains, known to be
connected to the spin-1 Haldane chain [7]. At θ ∼ 35◦,
where J2 = 0, the system turns into a spin chain with
alternating ferro- and antiferro-exchange [8]. At θ ∼ 85◦,
J ′1 = 0, it reduces to a ladder system of two ferromagnetic
chains with antiferromagnetic coupling and a ground
state called the rung singlet phase [10]. These ground
states seem unrelated: they bear distinct names and are
obtained using different methods for various models.

A main result of our work is that all the aforemen-
tioned points (Fig. 1c) belong to a single phase that
extends to all θ ∈ [0◦, 90◦) and η = 1, and are adi-
abatically connected to each other before touching the
Tomonaga-Luttinger liquid (TLL) limit at θ = 90◦. Our
model H thus unifies these known topological phases in
one-dimensional spin 1/2 systems. Furthermore, we will
show that the ground state wave function can be obtained
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exactly for a special point (IV in Fig. 1c) at θ ∼ 50.9◦,
where J ′1 = 2J2 < 0 and J1 > 0. We prove that it is
a pure product state of singlet dimers. Via continuity,
the ground state of our model for η = 1, including its
topological character, can then be understood from this
exact ground state. We will also show that as for η < 1,
a different SPT phase arises, and it also has an exactly
solvable point.

Phase diagram. To orientate the discussion, first we
summarize the phase diagram of H on the θ-η plane in
Fig. 2, obtained from infinite time-evolving block deci-
mation (iTEBD) numerical calculations [30]. Here both
the singlet dimer (SD) and even-parity dimer (ED) phase
are gapped SPT phases, while the TLL phase is gapless.
For a very narrow region, θ < 0.5◦, there is also a gapless
chiral phase consistent with previous study [25]. The chi-
ral phase is not our main focus here and discussed further
in the supplementary material [31]. The suppression of
the chiral phase is due to the alternating n.n. coupling
which breaks the translational symmetry Si → Si+1. In
large θ region, the arc-shaped phase boundary between
the SD and TLL phase on the θ-η plane is consistent with
the prediction from effective field theory [31].
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FIG. 2. The phase diagram of H in the θ − η plane obtained
from iTEBD. The insets depict the singlet dimer (SD) and
even-parity dimer (ED) phases. The thick solid lines in the
SD case indicate a singlet (| ↑↓〉 − | ↓↑〉)/

√
2 and the thick

dashed lines in the ED case stand for an even-parity bond
(| ↑↓〉 + | ↓↑〉)/

√
2. The oval stand for the effective spin-1’s

defined in Eq. 4. The dashed line at θ ∼ 50.9◦, η ∈ [0.747, 1]
and a point at η = 0, θ ∼ 42.4◦ are exactly solvable, and their
singlet/even-parity product state are shown. A chiral phase
(Ch) exists in a small θ regime, and the Tomonaga-Luttinger
liquid (TLL) phase occupies the large θ region. The error
bars are due to the finite step size in scanning θ or η.

The iTEBD method is based on the matrix product
state representation of many-body wave functions in the
thermodynamic limit. The Schmidt rank χ characterizes
the entanglement of the system and it serves as the only
adjustable parameter for precision control. Our calcula-

tion employs a unit cell of four sites and random complex
initial states. Several quantities are computed to charac-
terize the phases and detect possible phase transitions.
The first is the string order parameter [32] defined as

Ozn = − lim
r→∞
〈(Ŝzn+Ŝzn+1)eiπ

∑
kŜ

z
k (Ŝz2r+n+Ŝz2r+n+1)〉, (4)

where the k sum is restricted to n+ 2 ≤ k ≤ 2r + n− 1.
The motivation behind this definition is that the two
neighboring spins Ŝzn + Ŝzn+1 may form an effective spin-
1 degree of freedom (represented by an oval in Fig. 2).
A finite Oz detects hidden long range order. The SD
(ED) phase is associated with a finite Ozn value for even
(odd) site, say n = 2 (n = 1). A clear ED-to-SD phase
transition is observed in Fig. 3(b) as η is varied.

We also compute the von Neumann entanglement en-
tropy by cutting a J ′1 bond, SvN = −

∑
χ λ

2
χ lnλ2χ,

where λχ is a set of normalized Schmidt coefficients with
Schmidt rank χ. As shown in Fig. 3(a) for η = 1, both
SvN and Oz2 are finite and continuous while Oz1 remains
zero as θ is tuned. Together with other physical quan-
tities [31], these results show that the ground state re-
mains in a single SD phase for all θ < 90◦. Interestingly,
at θ = 50.9◦, SvN vanishes, hinting a pure product state.
We will show below that this is an exact solvable point.
On the other hand, as η is varied for fixed θ = 40◦, SvN

develops a sharp peak in Fig. 3(b). The peak position
coincides with the jump in Ozn and unambiguously iden-
tifies a phase transition from ED to SD. The variation of
the string order parameters near the transition depends
on the value of θ. For large θ, the transition appears
to be first order, but it slowly changes to a continuous
transition as θ decreases. We find that the central charge
c ∼ 2 at θ = 10◦, 20◦, 30◦, which suggests that the SPT
phase transition has stronger interacting behavior than
the Gaussian type phase transition [31].

Exact solutions. Now we elucidate the nature of the
SD and ED phase by two types of solvable points on the
η − θ plane. At θ ∼ 50.9◦, the relation J ′1 = 2J2 < 0
is satisfied with J1 > 0. Along this line (vertical dashed
line in Fig. 2) of fixed θ, the ground state of H can be
solved exactly for η ≥ ηc = (|J ′1| − J1)/J1 ≈ 0.747. The
procedure of constructing the exact ground state wave
function follows the spirit of the Majumdar-Ghosh (MG)
point for the antiferromagnetic Heisenberg chain: when
J1 = J ′1 = 2J2, its ground state is a direct product of
singlet dimers with two-fold degeneracy [33]. The MG
exact solution has been extended to the more general
case of J1 6= J ′1, J

′
1 = 2J2 with exchange anisotropy η for

all J > 0 by Shastry and Sutherland [34], and to cases
with ferromagnetic exchange by Kanter (for a different
model where not all n.n.n. interactions are included) [9].
We find that the technique can be applied to the zigzag
Hamiltonian H here and the ground state is also a direct
product of singlet dimers on J1 bonds.

The main steps of the solution are as follows. First,
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FIG. 3. Entanglement entropy SvN, string order parameter
Oz

1 and Oz
2 for (a) the Heisenberg limit η = 1, with χ = 300

and (b) along a line at θ = 40◦, with χ = 100. In (b), there
is a phase transition at η ∼ 0.769 characterized by the peak
of SvN and jumps of string order parameters.

for J ′1 = 2J2 < 0, the product state of spin singlet
(| ↑↓〉 − | ↓↑〉)/

√
2 on all J1 bonds, represented by thick

solid lines in Fig. 2, for all the J1 bond can be shown to
be an eigenstate of H for any η ∈ [0, 1] with eigenvalue
Eeg = −M(2 + η)J1/4, where M is the number of trian-
gles. Second, the total Hamiltonian is decomposed into
sum of triangle Hamiltonians, H =

∑
` h`, where h` is

the Hamiltonian for a single triangle labelled by `. The
ground state energy e` for h` can be calculated since it
only involves three spins. Note that Me` serves as the
lower bound of variational ground state energy. We find
that for η ≥ 0.747, Eeg = Me`, i.e. Eeg saturates the
lower bound. Therefore the singlet product state must be
the exact ground state. Interestingly, this product state
of singlet dimers is smoothly deformed to the Haldane
dimer phase at θ = 0, which can be understood from
emergent spin-1 degree of freedom driven by strong ferro-
magnetic n.n. couplings [6]. Our model explicitly verifies
the connection between these two cases, conjectured ear-
lier using bosonization [6]. Similarly, we find the ground
state for the point η = 0, θ ∼ 42.4◦ is the product of spin
triplet (| ↑↓〉 + | ↓↑〉)/

√
2 on all J ′1 bonds, shown by the

thick dashed lines in Fig. 2. Any ground state within the
ED phase can be continuously deformed to this triplet
product state without closing the gap. Similar to the
point η = 1, θ ∼ 50.9◦ shown in Fig. 3(b), the entangle-
ment entropy SvN of all the exact solvable cases are zero.
Details on the exact solution can be found in [31].

Both exact wave functions feature short range entan-
glement and preserve the symmetry of the Hamiltonian.
Both imply edge states: as the singlet/triplet valence
bond is cut open at the edge, free “dangling” spin-
1/2 edge excitations are created, similar to the Affleck-
Kennedy-Lieb-Tasaki state [35]. Each edge state is two-
fold degenerate and protected by, e.g., TR symmetry.
Despite having the same symmetry, the SD and ED phase
are topologically distinct. They cannot be deformed
smoothly into each other if TR, inversion and D2 symme-
try of spin rotation π about the x, y, and z axis remain
unbroken [1, 11, 36]. Details on all open chain cases can
be found in [31]. The SD (ED) phase here is adiabatically
connected to the D+ (D−) phase of J1 − J2 model stud-
ied in Ref. [11] for J1/J2 ∈ (−2.7,−1.5) and small bond
alteration δ. The Z2 indices α, β, γ, ω of these two SPT
phases are tabulated in Ref. [11]. Both SPT phases fea-
ture a double degeneracy in the entanglement spectrum
[36], and this is confirmed by our iTEBD calcuation.

Experimental signatures. A first step toward realizing
Hamiltonian Eq. (1) is to load polar molecules [16] into a
deep zigzag lattice [37, 38] with filling close to one. The
SPT phases can be detected by measuring the edge ex-
citations or the string order parameter. An open edge
can be engineered by a strong local optical potential to
terminate the zigzag chain or by creating local vacancies.
Such control and probe seem within the reach of recently
proposed site-resolved microscopy and spin-resolved de-
tection for polar molecules [39]. Then microwave spec-
troscopy may resolve edge states as a peak at “forbidden
energies” within the bulk gap. Furthermore, local per-
turbations can be applied to lift the edge degeneracy as
outlined in Ref. [13]. Measurements of string order pa-
rameters have been achieved in a few systems [40–43].

In summary, we have shown the zig-zag XXZ model in-
spired by molecular gas experiments provides a promising
platform for realizing SPT phases for spin-1/2 systems.
It unifies previous results in the Heisenberg limit by re-
vealing the connections between them, and elucidates the
nature of two robust SPT phases by finding their ex-
act ground states as product of singlet or triplet dimers.
From this perspective, searching for and understanding
the myriad of SPT phases could benefit from deform-
ing the Hamiltonian to special anchor points where the
ground state wavefunction simplifies, as demonstrated
here by exploiting the underlying triangular motif. Other
SPT phases in 1D can be potentially represented by such
anchor points where their nature is intuitive and appar-
ent from the exact wavefunctions. Finally, tuning the
zig-zag angle γ away from 30◦ opens up a large param-
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eter space of exchange couplings and the possibility of
new SPT phases that deserve future investigation.
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