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The universality class of the avalanche behavior in plastically deforming crystalline and amorphous
systems has been commonly discussed, despite the fact that the microscopic defect character in each
of these systems is different. In contrast to amorphous systems, crystalline flow stress increases dra-
matically at high strains and/or loading rates. We perform simulations of a two-dimensional discrete
dislocation dynamics model that minimally captures the phenomenology of nano-crystalline defor-
mation. In the context of this model, we demonstrate that a classic rate-dependence of dislocation
plasticity at large rates (> 103/s), fundamentally controls the system’s statistical character as it
competes with dislocation nucleation: At large rates, the behavior is statistically dominated by long-
range correlations of “dragged” mobile dislocations. At small rates, plasticity localization dominates
in small volumes and a spatial integration of avalanche behaviors takes place.

Crystal plasticity in small volumes has been inves-
tigated in the last two decades through the compres-
sion of micro and nano-pillars [1–6]. In these small
volumes, the material strength is size-dependent due to
strain gradients[7–17] generated by unconventional dis-
location generation and motion mechanisms. Further-
more, macroscopic work hardening [18, 19] is replaced by
a wealth of abrupt plastic events [20–24] that originate in
both the presence of dislocation correlations, as well as
the dramatic small volume effect of mobile dislocations
forming geometric steps on free pillar surfaces [21, 22, 25–
27]. Abrupt plastic events are common in avalanche phe-
nomena of various disordered non-equilibrium systems
across length scales [28–32], especially elastic interface
depinning phenomena, with which crystals share similar,
but not identical, avalanche statistics [33]. However, in
common crystal “depinning” modeling attempts [34–38],
avalanches are caused by a direct competition of elastic
loading and long-range elastic interactions with quenched
disorder, without temporal bursts in the number of elas-
tic degrees of freedom. In contrast, dislocations in nano-
crystals can also nucleate, multiply and deposit on free
boundaries [5, 39, 40], naturally causing additional frus-
tration that may influence the statistical avalanche be-
havior [37, 41–43]. Here, in the context of an explicit
dislocation dynamics model, we show that the competi-
tion between two different ways to mediate plastic slip –
dislocation nucleation and over-damped dislocation mo-
bility (ie. dislocation drag) – leads to a distinct rate ef-
fect on the avalanche statistics that becomes more pro-
nounced for stress-controlled loading conditions. We in-
terpret the phenomenon in terms of a spatial integration
of avalanche behaviors across slip planes [41]. This is a
generic mechanism in bifurcation processes such as the
Frank-Read nucleation of a single dislocation, and thus
we argue that the proposed effect should extend to 3D-

DDD models [32, 44].

Dislocation avalanches [45] have been observed ex-
perimentally in diameter-D micro and nano pillar com-
pression studies [21, 46, 47] where power law statis-
tics for the sizes S of the form P (S) = S−τP(S/S0)
has been established, where τ ∈ (1.2, 1.8), S0 ∼ D
and P resembles an exponential cutoff function [48].
Two [33, 49–61] and three [6, 27, 49, 62–65] dimensional
models of atomic displacements or/and discrete dislo-
cations simulations[33, 49, 51, 66, 67] have established
that τ ∼ 1.5 [68] or lower [56], regardless of loading pro-
tocols [20, 28], even if there are still various issues on
how the statistics is estimated [32, 33, 58]. However, re-
cent 3D Discrete Dislocation Dynamics (3D-DDD) stud-
ies [44] showed that avalanche statistics strongly depend
on the loading protocol, where power law statistics with
τ ∼ 1.5 only exhibited in stress-controlled (SC) loading.
In addition, recent experiments and continuum model-
ing [41, 69, 70] suggest that τ may take much larger
values, originating in internal disorder or/and thermal
relaxation mechanisms such as cross-slip.

The effect of loading protocols on the statistical be-
havior of nano-pillar compression has been studied re-
cently [71, 72], even though the connection between
stress rate σ̇ (in SC) and strain rate ε̇ (in displacement-
controlled loading (DC)) has been lacking at small rates.
In contrast, at large loading rates (> 103/s) and in the
macro-scale, crystals exhibit a sharp increase of the flow
stress due to viscoplastic dislocation drag effects when
strain rate surpasses ∼ 5000/s [73–76]. This fact is ver-
ified in DDD simulations [77, 78] and originates in the
natural competition between the timescale for a disloca-
tion to move a minimal distance at terminal speed and
the timescale for dislocation “nucleation” (eg. at a Frank-
Read source) [79]. How does this competition translate
to the statistical behavior of plasticity avalanches in small



volumes at rates smaller than 103/s?

In this paper, we consider a minimal model of crys-
tal plasticity for uniaxial compression in small volumes.
By “minimal”, we imply a model that respects: i) the
energetics of room temperature crystal deformation be-
ing mediated by dislocations gliding along slip planes of
at least one slip system ii) the fact that small-volume
crystalline plastic deformation originates in nucleation,
iii) open boundaries absorb dislocations , iv) competing
dislocation kinetics mechanisms. In order to maximize
statistical sampling and computational efficiency, we per-
form simulations of 2D samples using a benchmarked dis-
location dynamics model [80, 81] that displays the basic
phenomenology of nano-crystalline compression: Size ef-
fects in the material yield strength and emergent crack-
ling noise. For pure elasticity, SC and DC loading modes
can be compared by using σ̇ = E∗ε̇, where E∗ = E

1−ν2 is
the equivalent modulus for plane strain applications and
ν is the Poisson’s ratio. The loading strain-rate ε̇ is varied
from 10/s to 105/s. The model crystal is initially stress
and mobile-dislocation free. This is analogous to a well-
annealed sample, yet with pinned dislocation segments
that can act either as dislocation sources (eg. Frank Read
sources) or as obstacles. Dislocations are generated from
randomly distributed point sources when the resolved
shear stress crosses a random threshold τnuc for a finite
time δtnuc = 10ns [95]. The nucleated dislocation pair
is placed at a distance Lnuc = E/(4π(1− ν2))b/τnuc and
for our system parameters, it is 35nm on average [96].
Randomly distributed point obstacles account for precip-
itates and forest dislocations on out-of-plane slip systems.
These obstacles are minimal with only athermal pinning
criteria to avoid the interplay with additional timescales.
Microstructural parameters are chosen based on a previ-
ous study [80] that matches various experimental facts.
All simulation parameters are listed in Table I.

TABLE I: Model Parameters: The model is designed to
reasonably display the phenomenology of uniaxial nanopillar
compression experiments [80], with parameters for the slip
plane spacing d, slip plane orientation θ respective to the
loading direction, source density ρnuc, average source strength
τ̄nuc and its standard deviation (SDV), nucleation time tnuc,
obstacle density ρobs, average obstacle strength τ̄obs and its
SDV.

slip planes sources obstacles
d=10b ρnuc=60µm−2 ρobs=480MPa
θ = 30◦ τ̄nuc =50MPa τ̄obs =150MPa

δτnuc =5MPa δτobs =20MPa

The timescale competition in this model is generic and
present not only in all dislocation dynamics models, but
also in generic non-equilibrium processes [82]. Its basic
origin can be distilled by considering an imperfect pitch-
fork bifurcation: dε/dt = σ + µε − ε3, where ε, σ are
scalars resembling strain and stress variables, and µ is a

mobility parameter. Neglecting dislocation interactions,
on a slip plane without sources but a mobile dislocation,
µ = µdrift is negative and the relaxation timescale for
every incremental step of σ is δtdrift = |µdrift|−1. How-
ever, if a dislocation source is present without any mobile
dislocations, then µ = µnuc > 0 due to the existence of
the two states with and without a dislocation pair, and
the relaxation timescale during dislocation increments is
δtnuc = µ−1nuc. Typically, δtnuc � δtdrift, so increments
of σ will be accommodated by nucleation events. How-
ever, if a system of such possible bifurcations interact
(if multiple dislocation sources are present), then mutual
dislocation interactions may cause a frustrating situation
where the disparity of relaxation times may cause a com-
plexity in the evolution dynamics. In our DDD model,
the two timescales are concerned with the nucleation and
propagation of single dislocations.

Driven by local stress-induced forces [79], dislocations
follow athermal dynamics with mobility µd. Sample lat-
eral surfaces are free for dislocations to escape from the
surfaces. Samples (aspect ratio h/w = 4) are assumed to
carry single slip plasticity oriented at 30◦ (cf. Fig. 1(a)).
Dislocation sources (red dots) and obstacles (blue dots)
are located on slip planes, spaced 10b apart, with b =
0.25nm the Burgers vector’s length. The Young’s mod-
ulus is assumed E = 70 GPa and ν = 0.33. As it may
be seen in Fig. 1(b), a significant difference between two
loading rates (SC) can be seen through strain pattern-
ing at the same final strain (5%): plasticity is localized
(Fig. 1(c)) for small loading rates while it is relatively
uniform for a high loading rate (Fig. 1(d)).

As expected and shown in Fig. 2 (a), SC leads to hard-
ening while DC to softening, with the discrepancy be-
coming dramatic as system size decreases to sub-micron
dimensions. Typical size effects (σY ∼ w−0.4−0.6) are
seen for both loading protocols (cf. Fig. 2(b)), despite
the fact that dislocation density at 2% strain, shown in
the inset, increases with increasing w in different ways de-
pending on the loading conditions. In addition, the flow
stress shows a rate dependence for both loading condi-
tions (see Fig. 2(c)), even though DC shows weaker de-
pendence. The origin of the discrepancy at small rates
is that plasticity will be dominated by the weakest dis-
location source in DC while in SC, stress increases con-
sistently and monotonously, eventually triggering more
dislocation sources, towards a collective dislocation re-
sponse (see also Supplementary Information (SI)).

The dislocation density and flow stress dependences
on the rate suggest that SC rates statistically resemble
larger DC rates. This conclusion is also supplemented by
avalanche statistics (cf. Fig. 2(d)): In SC, event size is
defined as S =

∑
i ∈ {δεi>εthreshold} δε

i; in DC, an event is
characterized by stress drops δσ which lead to temporary
displacement overshoots – thus, in order to compare the
two loading conditions, a DC strain burst event size is
defined as S =

∑
i ∈ {−δσi>σthreshold} δε

i [44].
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FIG. 1: The model. (a) The pillar has width w and aspect
ratio h/w=4. Single slip system which oriented at 30◦ rela-
tive to y axis is used. Distance between planes is 10b where
b = 0.25nm is the magnitude of the Burgers vector. Red
dots stand for dislocation sources while blue dots represent
dislocation obstacles. (b) Sample stress strain curves of com-
pression at high (105/s) and low (102/s) stress rates σ̇. (c)
strain pattern after deformation at low σ̇, (d) strain pattern
after deformation at high σ̇.

In this model, dislocation plasticity is loading rate de-
pendent as there are two intrinsic time scales [77]: First,
the dislocation nucleation time δtnuc, which is chosen as
10 ns and can be associated to the dislocation multiplica-
tion timescale in other models. Second, the ratio between
dislocation mobility and material Young’s modulus B/E
which is chosen as 10−6 ns (B = 10−4Pa · s). These
parameters are consistent with recent single-crystal thin
film experiments [83, 84]. Phenomenology in metal-
lurgy [75, 85, 86], suggests that at low rates the flow
stress is controlled by dislocation nucleation while above
a certain strain rate (∼ 1000− 5000/s), it is mainly con-
trolled by dislocation drag. Fig. 2(c) shows the rate effect
under SC and DC conditions. For DC and at strain rates
higher than 5000/s, there is a strong flow stress rate de-
pendence. In SC, the drag regime starts when stress rate
is E∗ ∗ 102/s. The origin of this strain-rate crossover is
hidden in the amount of the strain that nucleation events
can acommodate, with ε̇ > 103/s forcing dislocation drag
to take over the dynamics of dislocations (see SI).

While both DC and SC display a flow stress rate effect,
their statistical noise behavior is very different: As shown
in Fig. 2(d), the plastic events statistics based on stress
strain curves shown in Fig. 2(a), have different τ expo-
nents: While plastic events show power law behavior, τ
is close to 3.5 for DC and 1.5 for SC.

The avalanche size distribution exponent discrepancy
between SC and DC disappears at high stress load-
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FIG. 2: Effect of loading protocol: Stress-Controlled
(SC) vs. Displacement-Controlled (DC). (a) Stress-
strain curves of different w using two different loading pro-
tocols. The strain rate ε̇ is 104/s in DC and stress rate σ̇ is
E∗ ∗ 104/s. A particular strain burst is shown; (b) Size effect
of flow stress at 2% strain (blue stands for DC and red stand
for SC, results are based on 50 realizations). The inset shows
the dependence of dislocation density on w at 2% strain for
different loading protocols. (c) Dependence of flow stress (for
w = 1µm) on rate. Strain rate ε̇ is used in DC (blue curve)
while the elastic corresponding stress rate σ̇ = E∗ε̇ is used
in SC (red curve). (d): Events (strain jumps) statistics for
different loading protocols, different point size represents dif-
ferent w. blue: DC, red: SC. Strain jump in DC mode is
calculated according to the method in [44].

(a) (b)

increasing
Lower 
Larger 

FIG. 3: SC Rate Effect Crossover. (a): Event statistics
for different σ̇ using SC. The effective τ changes from ∼ 3.5
for σ̇ = E∗ ∗10/s to ∼ −1.5 for σ̇ = E∗ ∗104/s. (b): Effect of
dislocation source density ρnuc and mobility B on power law
exponent: when σ̇ = E∗ ∗ 102/s, changing ρnuc from 60µm2

(purple curve) to 15µm2 (blue curve) leads to the exponent
changing from 2.5 to 2.1. Increasing B from 10−4 Pa.s to
10−3 Pa.s results in the change of exponent from 2.5 to 2.2.

ing rates: Fig. 3(a) shows avalanche statistics for dif-
ferent stress rate which varies from σ̇ = E∗ ∗ 10/s to
σ̇ = E∗ ∗104/s. Power law events distribution appear for
all stress rates, yet with different exponent which changes
from 3.5 for σ̇ = E∗ ∗ 10/s to -1.5 for σ̇ = E∗ ∗ 104/s
(See also SI). The dependence of the exponent on the
stress rate indicates that there is an intrinsic connec-
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FIG. 4: Spatial and temporal event distribution in
SC. Event distribution on all slip planes during the loading up
to 10% strain for σ̇ = E∗∗102 ((a)) and for σ̇ = E∗∗104 ((b)):
n is the total number of slip planes in the model. The color
changes from dark purple to yellow with increasing loading
strain. (c): Average avalanche size for σ̇ = E∗ ∗ 102 in a
single sample. (d): Average avalanche size for σ̇ = E∗ ∗ 104

in a single sample.

tion between event statistics and dislocation drag. In
order to verify the connection, for the same stress rate
σ̇ = E∗∗102/s , in Fig. 3(b) red curve, we increase the dis-
location mobility B by which the drag effect is enhanced,
it is seen that the exponent changes from 2.5 to 2.2. Dis-
location drag effect will also magnify when dislocation
nucleation effect is weakened due possibly to dislocation
cross-slip and other mechanisms (since the main source
of plasticity will be the moving of dislocations instead
of nucleations of new dislocations). This can be seen in
Fig. 3(b) blue curve, when lower dislocation source den-
sity is used, the exponent changes from 2.5 to 2.1.

Power law avalanche behavior in the elastic depinning
of disordered systems has been well established [29, 34–
36, 87]. However, crystal plasticity is known to be unsta-
ble to strain localization which adds an inhomogeneity
effect to power-law behaviors [89]. In Fig. 4(a) and (b),
we plot events spatial distribution along all slip planes
for the whole loading process (from small ε to large ε
which is represented by the color map from purple to
yellow). Fig. 4(a) shows the event spatial distribution
for a smaller loading rate (σ̇ = E∗ ∗ 102). It can be
seen that events are localized around certain slip planes,
moreover, events do not always happen at the same slip
planes. By contrast, the event distribution shown in
Fig. 4(b) for higher loading rate (σ̇ = E∗ ∗ 104) is more
uniform among slip planes, resembling a moving “inter-
face”. This inhomogeneity effect can be also seen by the
behavior of the event size with increasing strain (S vs.
time): Oscillatory-like behavior emerges for small stress
rate shown in Fig. 4(c) while no periodicity is observed

for higher stress rate. These results are strikingly similar
to the avalanche behavior reported in Ref. [41].

The onset of inhomogeneous response at small rates in
the absence of overall weakening in this model is the out-
come of an interplay between two timescales (as in other
elasticity models [37]) and a characteristic feature of
small volumes, since in that case, it is true that bound-
aries (free) may absorb propagating dislocations. Due
to this property, it is natural to expect an integration of
avalanche behaviors, dependent on the resetting behavior
that emerges from absorption and re-nucleation of dislo-
cations at various slip planes. The overall effect can be
thought of as originating within a relaxation process (nu-
cleation) that contributes to slip, in addition to mobile
dislocation motion. This is the type of coarse-grained
dislocation modeling that was pursued in Ref. [41] and
its analysis leads to critical power law exponents that
are higher than mean-field ones (∼ 3/2). Local het-
erogeneity biases the integration of the size probability
distribution of the conventional depinning models. In
this paper, through dislocation dynamics simulations, we
connect plasticity local heterogeneity to strain rate ef-
fect: the lower loading rate results in the higher hetero-
geneity which leads to a higher power law exponent. If
P (S, k) ∼ S−τ0e−kS , with k a cutoff parameter, then an
effective integrated distribution emerges:

Pint(S) =

∫ ∞
0

g(k′)P (S, k′)dk′ (1)

where g(k′) is the weight factor that characterizes the
contribution of various sub-critical, quasi-localized spa-
tial contributions to slip events and depends on the ap-
plied loading rate. This weight factor g(k′) contains a
natural k′ → 0 limit, due to the quasi-periodic resetting,
which in many cases takes the form of a power-law [41],
thus identifying a novel exponent g(k′) ∼ k′α. Thus,
for the critical aspect of Pint(S) ∼ S−τ0−α−1, with the
ultimate avalanche size exponent being,

τ = τ0 + α+ 1 (2)

For the current model, by the analysis of Figs. 4(a, b),
we can estimate α: If we assume that each 3 nearby slip
planes are locally independent from the rest of the sys-
tem, then the max event size in that area can provide
an estimate of the cutoff scale (k0 ∼ 1/S0). Then, the
distribution of k0’s provides the exponent. We find that
α ' 1 by plotting the histogram of events that consid-
ering τ0 ' 1.5. However, the statistics has not been
adequate to justify a precise exponents’ identification.

Our model is limited to small deformations, and does
not include boundary roughness stress effects, or ther-
mal effects on obstacles/sources [93, 94]. However, it
is interesting to compare the statistical behavior of this
model to mean-field plasticity avalanche behaviors, which
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may emerge in disordered materials or granular sys-
tems [28, 92]. We find (cf. Table II) that free nanoscale
boundaries and competition between dislocation nucle-
ation and drag conspire to give quasi-periodic avalanche
bursts. The behavior is akin to a mean-field integrated
behavior [32], as the strain-rate decreases, and it was
originally labeled as avalanche oscillator [41]. In this
model, at low strain-rates, critical exponents τ and α are
higher than typical mean-field, but the spectral density
one x [90] remains at its mean-field limit at low rates (see
SI) while x’ (〈S〉 ∼ T x′

) implies integrated mean-field be-
havior [90] (cf. Table II). This novel behavior might ex-
plain large exponents in crystal plasticity of small grains
in polycrystals [91] or crystalline pillar experiments [72].

TABLE II: Universality and Exponents. Basic mean-
field avalanche exponents characterize power-law behaviors in
avalanche sizes P (S) ∼ S−τ , durations P (T ) ∼ T−α, spectral
response S(ω) ∼ ω−x and average size-duration relationship

〈S〉 ∼ T x
′
.

Exponent Mean-Field Theory Avalanche Oscillator

τ 3/2 Rate-Dependent> 3/2
α 2 Rate-Dependent> 2
x 2 2
x′ 2 1
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