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Consider a chaotic dynamical system generating Brownian motion-like diffusion. Consider a
second, non-chaotic system in which all particles localize. Let a particle experience a random
combination of both systems by sampling between them in time. What type of diffusion is exhibited
by this random dynamical system? We show that the resulting dynamics can generate anomalous
diffusion, where in contrast to Brownian normal diffusion the mean square displacement of an
ensemble of particles increases nonlinearly in time. Randomly mixing simple deterministic walks on
the line we find anomalous dynamics characterised by ageing, weak ergodicity breaking, breaking
of self-averaging and infinite invariant densities. This result holds for general types of noise and for
perturbing nonlinear dynamics in bifurcation scenarios.

Many diffusion processes in nature and society were
found to behave profoundly different from Brownian mo-
tion, which describes the random-looking flickering of a
tracer particle in a fluid [1–8]. Brownian dynamics pro-
vided a long-standing powerful paradigm to understand
spreading in terms of normal diffusion, where the mean
square displacement (MSD) of an ensemble of particles
increases linearly in the long time limit, 〈x2〉 ∼ tα with
α = 1. Anomalous diffusion is characterized by an ex-
ponent α 6= 1 [1–4]. Subdiffusion with α < 1 is com-
monly encountered in crowded environments as, e.g., for
organelles moving in biological cells and single-file diffu-
sion in nanoporous material [5, 6]. Superdiffusion with
α > 1 is displayed by a variety of other systems, like an-
imals searching for food and light propagating through
disordered matter [7, 8].

Experimental data exhibiting anomalous diffusion is
often modelled successfully by advanced concepts of
stochastic theory, most notably subdiffusive continuous
time random walks, superdiffusive Lévy walks, gener-
alized Langevin equations, or fractional Fokker-Planck
equations [1–8]. In these stochastic models the mecha-
nisms generating anomalous diffusion are put in by hand
on a coarse grained level, either via non-Gaussian prob-
ability distributions or via power law memory kernels.
While this stochastic approach to anomalous diffusion
has matured impressively, anomalous diffusion in deter-

ministic dynamical systems is yet poorly understood.
In nonlinear deterministic equations of motion there are
only few mechanisms known to generate anomalous diffu-
sion [3]: stickiness of orbits to KAM tori in Hamiltonian
dynamics [1, 2, 9, 10], marginally unstable fixed points
in dissipative Pomeau-Manneville-like maps [11–15] and
non-trivial topologies exhibited by polygonal billiards
[16]. In this Letter we introduce a simple hybrid sys-
tem at the interface between deterministic and stochastic

dynamics. We show that it yields another generic mech-
anism for anomalous diffusion based on stochastic chaos
in random dynamical systems [17, 18]. This sheds new
light on the microscopic origin of anomalous dynamics.
Similar models have been used to understand the con-
vection of particles in flowing fluids [21] including fractal
clustering [22] and path coalescence [23], the localisation
transition in continuum percolation problems [24], inter-
mittency in nonlinear electronic circuits [25] and random
attractors in stochastic climate dynamics [26]. Accord-
ingly, we expect fruitful applications of our approach to
these problems.
Figure 1 gives our recipe to combine two deterministic

dynamical systems D and L randomly in time. Here D
generates normal diffusion while L yields localization of
particles. We sample randomly between both systems
with probability p of choosing L at discrete time step
t ∈ N, respectively probability 1− p of chooosing D. For
p = 0 we thus recover the dynamics of D while for p = 1
we obtain the one of L. This implies that there must
exist a transition between these two different dynamics
under variation of p. Our central question is: For 0 <
p < 1, what type of diffusive dynamics emerges in the
resulting random dynamical system R? Here we model
deterministic diffusion by chaotic random walks on the
line [16, 27–29] defined by the equation of motion xt+1 =
Ma(xt), where

Ma(x) =

{

ax , 0 ≤ x < 1
2

ax+ 1− a , 1
2
≤ x < 1

, a > 0 , (1)

is a piecewise linear map lifted onto R by Ma(x + 1) =
Ma(x)+1, cf. the inset in Fig. 2(a). For a > 2 this model
exhibits normal diffusion with a Lyapunov exponent cal-
culated to (see Sec. 1 in our Supplement [30], which in-
cludes Refs. [31–36]) λ(a) = ln a [16, 37–39]. The sample
trajectory in the upper left of Fig. 1 was obtained from
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FIG. 1: Diffusion generated by a random dynamical system.
The three time series in space-time plots display the position
xt ∈ R of a point particle at discrete time t ∈ N. The trajec-
tory in the upper left is generated by the equation of motion
xt+1 = D(xt) using a deterministic dynamical system D that
yields normal diffusion. The trajectory in the upper right is
from xt+1 = L(xt) for a deterministic dynamical system L
where all particles localize in space. The random dynamical
system R mixes these two types of dynamics at time t based
on flipping a biased coin: The position xt+1 of the particle at
the next time t+1 is determined by choosing with probability
1−p the diffusive system D while L is picked with probability
p. The trajectory generated by xt+1 = R(xt) displays inter-
mittency, where long regular phases alternate randomly with
irregular-looking, chaotic motion.

D = M4(x), where the dynamics is chaotic according to
λ(4) = ln 4 > 0. The trajectory in the upper right of
Fig. 1 corresponds to L = M1/2(x), where the dynam-
ics is non-chaotic due to λ(1/2) = − ln 2 < 0. Here all
particles contract onto stable fixed points at integer posi-
tions x ∈ Z. For defining the random map R the slope a
becomes an independent and identically distributed, mul-
tiplicative random variable: At any time step t we choose
for our map R = Ma(x) with probability p ∈ [0, 1] the
slope a = 1/2 while with probability 1− p we pick a = 4.
The sequence of random slopes may or may not depend
on the individual particle if we consider an ensemble of
them [40], as we explore below. Random maps of this
type are also called iterated function systems [41, 42].
They have been studied by both mathematicians and
physicists in view of their measure-theoretic [42–44] and
statistical physical properties [21, 40, 45, 46].

One can show straightforwardly that the Lyapunov ex-
ponent λ(p) of the random map R is zero at probability
pc = 2/3 [30]. Since λ(p) > 0 for p < pc the mapR should
generate normal diffusion in this regime while p > pc
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FIG. 2: Mean square displacement (MSD) and waiting time
distribution (WTD) for randomized deterministic diffusion.
The two deterministic dynamical systems that are randomly
sampled in time with probability p by applying the recipe
of Fig. 1 are illustrated in the inset of (a). All symbols
are generated from computer simulations. (a) MSD 〈x2

t 〉 for
p = 0.6, 0.63, 0.663, 2/3, 0.669, 0.68, 0.7 (top to bottom) for an
ensemble of particles, where each particle experiences a dif-
ferent random sequence. There is a characteristic transition
between normal diffusion and localization via subdiffusion at
a critical pc = 2/3. (b) MSD at pc by starting the compu-
tations after different ageing times ta = 0, 102, 103, 104 (top
to bottom). The MSD displays ageing similar to analytical
results from continuous time random walk (CTRW) theory
[13] (bold lines). (c) WTD η(t) at pc for particles leaving a
unit interval at the same ageing times ta as in (b). The bold
lines are again analytical results from CTRW theory [13]. (d)
MSD at the critical probability pc for different types of aver-
aging over the random variable. For the straight black line
with matching symbols each particle experiences a different
random sequence (called uncommon noise), cf. Fig. 2(a). The
other four lines depict MSDs obtained from applying the same
sequence of random variables to all particles (called common
noise). In these four cases the MSD becomes a random vari-
able breaking self-averaging.

with λ(p) < 0 should lead to localization for long times.
In Fig. 2 we test this conjecture by comparing numeri-
cal with analytical results. For our simulations we used
∼ 105 iterations of R with ∼ 105 initial points, which
were distributed randomly and uniformly in the unit in-
terval [0, 1). Here each particle experienced a different se-
quence of random slopes. We used an arbitrary precision
algorithm with up to 1010000 decimal digits. Figure 2(a)
depicts the MSD 〈x2

t 〉 under variation of p by confirm-
ing the diffusion scenario conjectured above. However,
passing through pc the dynamics displays a subtle tran-
sition: Right at pc we obtain long-time subdiffusion,
〈x2(t)〉 ∼ t1/2, while around pc this dynamics survives
for long transient times. Figures 2(b) and (c) reveal that
right at pc R exhibits ageing [47, 48] in both the MSD
and the waiting time distribution (WTD). The latter is
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FIG. 3: Subdiffusion for different types of randomness. (a) Sample trajectories at pc corresponding to 30 different initial
conditions with uncommon noise. (b) Same as (a) with common noise. The envelopes in (a) and (b) correspond to the
subdiffusive spreading for uncommon noise shown in Fig. 2(d). (b) displays jump time synchronization of all particles. The
inset in (a) yields in double-logarithmic plot the infinite invariant density within a unit cell for uncommon noise for the map
R mod 1.

the probability distribution η(t) of the times t it takes a
particle to escape from a unit interval of R. In both (b)
and (c) there is good agreement with analytical results
from continuous time random walk (CTRW) theory for
long times, 〈x2

t 〉 ∼ (t+ta)
α−tαa and η(t) ∼ tαa/[(t+ta)t

α],
where ta is the ageing time [13]. This theory furthermore
predicts that for long times a WTD of η(t) ∼ t−γ implies
a MSD of 〈x2(t)〉 ∼ tγ−1 [11–15]. For R this relation is
fulfilled with γ = 3/2. An exponent of the WTD of 3/2
yields a diverging mean waiting time. This as well as the
existence of ageing imply weak ergodicity breaking of the
dynamics [47–49].

However, our map R generates dynamics that goes be-
yond conventional CTRW theory. This becomes appar-
ent by looking at different types of averaging over the ran-
dom variables shown in Fig. 2(d): While in Fig. 2(a)-(c)
each particle experienced a different sequence of random
slopes, as reproduced by the straight line with matching
symbols for the MSD in Fig. 2(d), for all the other MSDs
in (d) the corresponding random sequences are the same

for all particles. Accordingly, we call the former type of
randomness uncommon noise, the latter common noise.
Crucially, while in Fig. 2(a), based on uncommon noise,
the MSD is well-defined for all p, Fig. 2(d) shows that for
common noise sequences it becomes a random variable at
pc in the long time limit that completely depends on the
random squence chosen. This bears strong similarity to
what is called breaking of self-averaging for random walks
in quenched disordered environments [50], which also im-
plies weak ergodicity breaking [51].

Figure 3 displays space-time plots of 30 trajectories
starting at different initial points for (a) uncommon noise
and (b) common noise. While in (a) the different tra-
jectories look rather irregular yielding a spreading front
that matches to the subdiffusion depicted in Fig. 2(d)
for uncommon noise, (b) shows ‘temporal clustering’ in
the form of jump time synchronization, i.e., all particles
eventually jump from unit cell to unit cell at the same
time step. This matches to the fact that the MSD does

not converge for common noise as seen in Fig. 2(d). The
inset in (a) represents the invariant density of the map
R mod 1, i.e., within a unit cell, with uncommon noise.
We see that it decays on average like ρ(x) ∼ x−1. This
result and the stepwise structure of ρ(x) are in agreement
with analytical calculations [43, 44]. At zero Lyapunov
exponent uncommon noise thus leads to a weak spatial
clustering [22] and path coalescence [23] of particles at
integer positions x ∈ Z. In contrast, for common noise
an invariant density does not exist, and we do not find
any spatial clustering.

We now explore the origin of this type of anomalous
dynamics in terms of dynamical systems theory. As
exemplified by the trajectory shown at the bottom of
Fig. 1, around pc the dynamics of R is intermittent [52]
meaning long regular phases alternate randomly with
irregular-looking, chaotic motion. A paradigmatic in-
termittent dynamical system is the Pomeau-Manneville
map Pz,b(x) = x+ bxz , b ≥ 1 , x ∈ [−1/2, 1/2). Defining
its equation of motion in the same way as for Ma above
it generates subdiffusion characterized by a MSD and a
WTD that in suitable scaling limits match to the predic-
tions of CTRW theory with γ = z/(z − 1) [11, 12, 15].
As shown above, for the map R CTRW theory correctly
predicts the relation between the long-time MSD and the
WTD by using γ = 3/2. Trying to understand the ran-
dommap R in terms of Pz,b thus suggests to choose z = 3.
One should now compare the invariant densities ρ(x) of
the two maps mod 1: For Pz,b mod 1 it is known that
ρ(x) ∼ x1−z , x ≫ 0, which for z ≥ 2 becomes a non-
normalizable, infinite invariant density [53, 54]. But for
z = 3 this yields ρ(x) ∼ x−2 while for R mod 1 we have
ρ(x) ∼ x−1, see the inset of Fig. 3(b) [56]. Hence, the in-
termittency displayed by R is not of Pomeau-Manneville
type but of a fundamentally different microscopic dy-
namical origin. This might relate to deviations between
CTRW theory, which on a coarse-grained level works well
for the Pomeau-Manneville map, and our numerical re-
sults for R on short time scales in the MSD and the WTD
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of Fig. 2. It would be interesting to further explore such
differences, e.g., by the approach outlined in Ref. [55].
However, there is another type of intermittency in

dynamical systems that is profoundly different from
Pomeau-Manneville dynamics, called on-off intermit-

tency [57–62]. It was first reported for two-dimensional
coupled maps

xt+1 = (1− ǫ)f(xt) + ǫf(yt)

yt+1 = (1− ǫ)f(yt) + ǫf(xt) , (2)

where xt+1 = f(xt) is chaotic with positive Lyapunov
exponent and ǫ ∈ [0, 1] [57, 58]. When ǫ is large, the pos-
sibly chaotic dynamics is trapped on the synchronization
manifold xt = yt. By decreasing ǫ to a critical param-
eter ǫ = ǫ∗ trajectories start to escape from this mani-
fold into the full two-dimensional space. This is called
a blowout bifurcation and the associated intermittency
on-off intermittency [63]. In subsequent works Eqs. (2)
were boiled down to more specific two-dimensional maps
[21, 44, 57, 59–62, 64]. The simplest ones are piecewise
linear [44, 61, 64], such as [44]

xt+1 =







axt (xt < 1 , 0 ≤ yt ≤ p)
1
axt (xt < 1 , p < yt ≤ 1)

1 + b(1− xt) (xt ≥ 1)

yt+1 =

{

yt

p (0 ≤ yt ≤ p)
yt−p
1−p (p < yt ≤ 1) ,

(3)

with symmetry y → −y and parameters a > 0, b ∈ R, p ∈
(0, 1). Due to its skew product form this system can be
understood as a one-dimensional map xt+1 = f(xt) with
multiplicative randomness generated by yt+1 = g(yt)
[21, 57, 59, 60, 62, 64]. In a next step one might re-
place the deterministic chaotic dynamics of yt by stochas-
tic noise. If we now consider the dynamics of xt in
Eqs. (3) on the unit interval only by choosing a = 2,
taking the map mod 1 and choosing dichotomic noise,
we obtain a simple piecewise linear map with multiplica-
tive randomness that is qualitatively identical to our
model R mod 1 [21, 43, 44]. For this class of systems
it has been shown numerically and analytically that at
a critical pc the invariant density of x = xt decays like
ρ(x) ∼ x−1 [44, 58, 60, 62, 64–66] and that a suitably de-
fined waiting time distribution between chaotic ‘bursts’
obeys η(t) ∼ t−3/2 [44, 62, 64–66]. In Refs. [65, 66] differ-
ent diffusive models driven by on-off intermittency have
been studied, and for two of them [66] subdiffusion with
a MSD of 〈x2(t)〉 ∼ t1/2 has been obtained by matching
simulation results to CTRW theory. We thus conclude
that our model R exhibits anomalous diffusion generated
by on-off intermittency. We emphasize, however, that
the mechanism underlying our model depicted in Fig. 1
is more general than this particular type of intermittent
dynamics.
In order to check for the generality of our results, in the

Supplement [30] we first replace the dichotomic noise by

physically more realistic continuous noise distributions
choosing 1. uniform noise on a bounded interval, and 2.
a non-uniform unbounded log-normal distribution. Fig-
ures 1 and 2 in Secs. 2 and 3 of [30], respectively, show
that our mechanism is very robust under variation of the
type of noise. We may thus conjecture that our scenario
of subdiffusion generated by random maps holds for any
generic type of noise. We also tested whether the strong
localisation due to contraction onto a stable fixed point
can be replaced by a weaker chaotic localisation to a sub-
region in phase space. However, in this case the transi-
tion between diffusive and localised dynamics is entirely
different without displaying any subdiffusion, cf. Fig. 3
in Sec. 4 of [30]. As a general principle, one must thus
mix expansion with contraction to generate anomalous
dynamics. Finally, in Sec. 5 of [30] we study a simple
nonlinear map that exhibits different types of diffusion
in different parameter regions of a bifurcation scenario
generating chaotic and periodic windows. Randomizing
this map according to Fig. 1 yields again subdiffusion
with a MSD of 〈x2

t 〉 ∼ t1/2 and a WTD of η(t) ∼ t−3/2,
cf. Fig. 4 in [30] which includes Refs [67–69]. This demon-
strates that the basic mechanism generating anomalous
diffusion which we propose is also robust in a nonlinear
setting.

In summary, we have shown that anomalous dynamics
emerges if we randomly mix chaotic diffusion and non-
chaotic localisation with a sampling probability yielding
a zero Lyapunov exponent of the randomized dynamics.
Interestingly, our basic mechanism bears similarity with
the famous problem of a protein searching for a target at
a DNA strand [70]: Here the protein randomly switches
between (normal) diffusion in the bulk of the cell and
moving along the DNA. This is called facilitated diffu-

sion, as the random switching between different modes
may decrease the average time to find a target [70–72].
We are not aware, however, that for this problem any
emergence of anomalous diffusion as an effective dynam-
ics representing the whole diffusion process has been dis-
cussed. Along these lines, one might speculate that using
our framework for combining normal diffusion with con-
stant velocity scanning [71] could yield a kind of Lévy
walk [8], which poses an interesting open problem.

Y.S. is funded by the Grant in Aid for Scientific Re-
search (C) No. 18K03441, JSPS, Japan. R.K. thanks
Prof. Krug from the U. of Cologne and Profs. Klapp and
Stark from the TU Berlin for hospitality as a guest sci-
entist as well as the Office of Naval Research Global for
financial support. Y.S. and R.K. acknowledge funding
from the London Mathematical Laboratory, where they
are External Fellows, and thank two anonymous referees
for very helpful comments.



5

∗ Electronic address: ysato@math.sci.hokudai.ac.jp
† Electronic address: r.klages@qmul.ac.uk

[1] M.F. Shlesinger, G.M. Zaslavsky, and J. Klafter. Nature,
363:31, 1993.

[2] J. Klafter, M. F. Shlesinger, and G. Zumofen. Phys.
Today, 49:33, 1996.

[3] R. Klages, G. Radons, and I.M. Sokolov, editors. Anoma-
lous transport: Foundations and Applications. Wiley-
VCH, Berlin, 2008.

[4] R. Metzler et al. Phys. Chem. Chem. Phys., 16:24128,
2014.
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