
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Exact Quantum Many-Body Scar States in the Rydberg-
Blockaded Atom Chain

Cheng-Ju Lin and Olexei I. Motrunich
Phys. Rev. Lett. 122, 173401 — Published 29 April 2019

DOI: 10.1103/PhysRevLett.122.173401

http://dx.doi.org/10.1103/PhysRevLett.122.173401


Exact Quantum Many-body Scar States in the Rydberg-blockaded Atom Chain

Cheng-Ju Lin and Olexei I. Motrunich
Department of Physics and Institute for Quantum Information and Matter,

California Institute of Technology, Pasadena, CA 91125, USA
(Dated: January 14, 2019)

A recent experiment in the Rydberg atom chain observed unusual oscillatory quench dynamics
with a charge density wave initial state, and theoretical works identified a set of many-body “scar
states” showing nonthermal behavior in the Hamiltonian as potentially responsible for the atypi-
cal dynamics. In the same nonintegrable Hamiltonian, we discover several eigenstates at infinite
temperature that can be represented exactly as matrix product states with finite bond dimension,
for both periodic boundary conditions (two exact E = 0 states) and open boundary conditions
(two E = 0 states and one each E = ±

√
2). This discovery explicitly demonstrates violation of

strong eigenstate thermalization hypothesis in this model and uncovers exact quantum many-body
scar states. These states show signatures of translational symmetry breaking with period-2 bond-
centered pattern, despite being in one dimension at infinite temperature. We show that the nearby
many-body scar states can be well approximated as “quasiparticle excitations” on top of our exact
E = 0 scar states, and propose a quasiparticle explanation of the strong oscillations observed in
experiments.

Introduction.- Understanding quantum thermalization
in isolated systems has attracted a lot of attention, both
due to developments in cold atom experiments and fun-
damental theoretical interest. Eigenstate thermalization
hypothesis (ETH) has emerged as a paradigmatic mech-
anism for quantum thermalization [1, 2]. ETH postu-
lates that a generic many-body system thermalizes at the
level of individual eigenstates: Eigenstates at the same
energy density give the same expectation values of “local-
enough” observables. The strong version of ETH requires
this on every eigenstate. While an analytical proof is
elusive, many numerical studies provided strong corrob-
orations [3–6]. However, some systems showed atypical
dynamics [7, 8] due to special low-energy states [9–11].

A recent Rydberg cold atom experiment [12] hinted a
new scenario, where the system exhibited atypical quench
dynamics starting from a charge density wave (CDW)
state at effective temperature T =∞. In contrast, a uni-
form initial state with the same energy density showed
the expected thermalization behavior. References [13, 14]
proposed that this phenomenon is related to the presence
of special eigenstates—quantum many-body scar states—
which violate ETH in the otherwise thermal spectrum,
analogous to the nonergodic single-particle scar wave-
functions inside the chaotic single-particle spectrum [15].

Another nonintegrable system hosting nonthermal
eigenstates is the Affleck-Lieb-Kennedy-Tasaki (AKLT)
model [16]. Reference [17] constructed families of exact
eigenstates in this model. Using matrix product states
(MPS), further Ref. [18] showed that these exact eigen-
states with finite energy density have logarithmic entan-
glement scaling in the subsystem size. These papers thus
provided important analytical demonstration of exact
scar states that violate ETH [19]. Other works [20, 21]
also proposed a special construction to embed nonther-
mal eigenstates into the many-body spectrum.

Remarkably, in the same Rydberg atom Hamiltonian

studied in Refs. [12–14, 22, 23], we have discovered some
exact scar states with finite bond dimension at energy
density corresponding to T = ∞. Our exact MPS de-
scription shows that these exact scar states have constant
entanglement scaling and are hence even more “nonther-
mal” than the exact scar states at finite energy density
in Refs. [17, 18]. Furthermore, these exact scar states
break the lattice translation symmetry, despite being at
T = ∞. Thus, the strong-ETH is violated in the Ry-
dberg atom chain. Using “single-mode approximation”
(SMA) and generizing it to “multi-mode approximation”
(MMA) on top of our exact scar states, we also find good
approximations to nearby scar states, potentially relating
the existence of other scar states to our exact states.

Constrained Hilbert space and Hamiltonian.- Consider
Rydberg atoms on a chain with L sites, and denote |0〉
as the atomic ground state and |1〉 as the Rydberg ex-
citation. The Rydberg blockade prohibits states with
| . . . 11 . . .〉 on any two neighboring sites [12]. Despite
the resulting non–tensor-product structure of the Hilbert
space, one can still have ETH concept [24].

The dynamics of this system is described by so-called
PXP model:

H =

L−1∑
j=2

Pj−1XjPj+1 +H1 +HL , (1)

where P = |0〉〈0| is the projector to the Rydberg atom
ground state and X = |0〉〈1| + |1〉〈0| describes transi-
tions between the ground and excited states. (Previ-
ous works [25–28] studied low-energy states of related
Hamiltonians.) For periodic boundary conditions (PBC),
we have H1 = PLX1P2 and HL = PL−1XLP1; while
for open boundary conditions (OBC), H1 = X1P2 and
HL = PL−1XL. For PBC, the Hamiltonian has transla-
tion symmetry Tx and inversion symmetry I; while for
OBC, there is only inversion symmetry relative to the
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midpoint, I : j → L−j+1. Furthermore, one can de-
fine “particle-hole transformation” Cph =

∏
j Zj , where

Z = |1〉〈1|− |0〉〈0|. This satisfies CphHC−1ph = −H, which
guarantees that the spectrum is symmetric around zero
energy; moreover, intertwining of Cph with the inver-
sion symmetry produces exponentially many zero-energy
eigenstates [14, 29].

The above Hamiltonian, despite its simple appearance,
is not trivially solvable. While its level-spacing statistics
indicates its nonintegrability [14], a recent work [23] has
suggested that it could be a deformation from some in-
tegrable Hamiltonian.

Inspired by Ref. [17], we inspected entanglement spec-
tra of eigenstates of the PXP model for OBC and discov-
ered eigenstates at E = ±

√
2 with finite bond dimension.

We then reverse-engineered simple MPS representation
for these eigenstates and further identified two more ex-
act eigenstates with E = 0 for OBC and two exact eigen-
states at E = 0 for PBC. Hence, these states analytically
demonstrate that the PXP Hamiltonian violates strong-
ETH and are therefore exact quantum many-body scar
states.

Exact scar states for PBC.- These eigenstates exist for
even L (assumed throughout) and are expressed using
MPS. We define 2× 3 and 3× 2 matrices

B0 =

(
1 0 0
0 1 0

)
, B1 =

√
2

(
0 0 0
1 0 1

)
, (2)

C0 =

0 −1
1 0
0 0

 , C1 =
√

2

 1 0
0 0
−1 0

 . (3)

Two (unnormalized) exact scar states for PBC can be
expressed as

|Φ1〉 =
∑
{σ}

Tr[Bσ1Cσ2 . . . BσL−1CσL ]|σ1 . . . σL〉 , (4)

and |Φ2〉 = Tx|Φ1〉, where σj = 0 or 1. The wave-
functions satisfy the constraints since B1C1 = 02×2 and
C1B1 = 03×3. In Supplemental Material [30], we prove
H|Φi〉 = 0. Since these states are at E = 0, their effective
temperature is T =∞.

The norm of the states are 〈Φi|Φi〉 = 3Lb +2+(−1)Lb ,
where Lb ≡ L/2. The two states are not orthogonal and
have overlap 〈Φ1|Φ2〉 = 2[(

√
2−1)Lb +(−1)Lb(

√
2+1)Lb ];

however, they are linearly independent for Lb > 3 [for
Lb ≤ 3, we happen to have |Φ2〉 = (−1)Lb |Φ1〉]. For
Lb > 3, the states |Φ1,2〉 in fact break the translation
symmetry Tx, while by construction they are invariant
under T 2

x . One can form degenerate states |ΦK=0/π〉 =
|Φ1〉 ± |Φ2〉 that carry definite momenta 0 and π, which
can be viewed as a finite-size signature of the Tx breaking
that appears in the thermodynamic limit.

Let us examine properties of the state |Φ1〉 (proper-
ties of |Φ2〉 simply follow). First, the breaking of Tx in
this state cannot be detected by any one-site observable,

since the one-site reduced density matrices are the same
for all sites, ρone-site = 2

3 |0〉〈0|+
1
3 |1〉〈1| in the thermody-

namic limit [30]. In particular, for the Rydberg excitation
number nj = |1〉〈1|, we have 〈Φ1|nj |Φ1〉/〈Φ1|Φ1〉 = 1

3 .
This violates ETH, since at T = ∞, the Gibbs ensem-
ble predicts 〈nj〉T=∞ = (1 + φ2)−1 ≈ 0.2764, where
φ = (1 +

√
5)/2 is the golden ratio.

On the other hand, two-site observables can detect the
Tx breaking, as can be seen from the corresponding re-
duced density matrices for subsystems [1, 2] and [2, 3] in
the |Φ1〉 state:

ρtwo-site
[1,2] =

1

3
(|00〉〈00|+ |01〉〈01|+ |10〉〈10|) , (5)

ρtwo-site
[2,3] =

1

3
(|00〉〈00|+ |01〉〈01|+ |10〉〈10|)

− 1

9
(|01〉〈10|+ |10〉〈01|) . (6)

In particular, we see that |0j1j+1〉〈1j0j+1|+ H.c. has ex-
pectation value 0 for j odd and −2/9 for j even.

We also list the symmetry properties of these exact scar
states (see [30] for the proof). For L even, the inversion
I defined earlier is relative to a bond center and is not
broken. We find I|Φ1〉 = (−1)Lb |Φ1〉. For |Φ2〉, note
that since ITx = T−1x I and T 2

x |Φi〉 = |Φi〉, we obtain
also I|Φ2〉 = (−1)Lb |Φ2〉. While Cph is not a symmetry
of H, our states are in fact eigenstates of Cph. We have
Cph|Φi〉 = (−1)Lb |Φi〉 for both i = 1, 2.

Exact scar states for OBC.- We also found exact
scar states for OBC with the same bulk MPS. Defining
“boundary vectors” v1 = (1, 1)T and v2 = (1,−1)T , we
can write four exact scar states

|Γα,β〉 =
∑
{σ}

vTαB
σ1Cσ2 . . . BσL−1CσLvβ |σ1 . . . σL〉 , (7)

where α, β ∈ {1, 2}. The eigen-energies are E = 0 for
|Γα,α〉, E =

√
2 for |Γ1,2〉, and E = −

√
2 for |Γ2,1〉,

see [30].
It is interesting to examine the energy den-

sity profiles. Figure 1(a)(b) shows 〈Xj〉α,β ≡
〈Γα,β |Xj |Γα,β〉/〈Γα,β |Γα,β〉 in each state [30]. We can
see that there are localized “energy lumps” at the edges
of the chain. The profiles decay exponentially into the
bulk with decay length 2 ln(3). The integrated energy
over each lump is

√
2/2 or −

√
2/2 depending on the ter-

mination, which can be thought as representing different
“edge states.”

The symmetry properties of |Γα,β〉 can be derived in
a similar fashion as for PBC [30]. In particular, we have
I|Γ1,2〉 = (−1)Lb−1|Γ1,2〉 and I|Γ2,1〉 = (−1)Lb−1|Γ2,1〉;
while I|Γ1,1〉 = (−1)Lb |Γ2,2〉 and I|Γ2,2〉 = (−1)Lb |Γ1,1〉.
As for the particle-hole transformation, we obtain
Cph|Γ1,2〉 = (−1)Lb |Γ2,1〉 and Cph|Γ1,1〉 = (−1)Lb |Γ2,2〉.
The fact that |Γ1,2〉 and |Γ2,1〉 are eigenstates of I means
that they can be nondegenerate, which is what we found
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(c) L = 18 open boundary condition

E

|⟨E |Z(+)
2 ⟩ |2

|⟨Γ1,2 |Z(+)
2 ⟩ |2 , |⟨Γ2,1 |Z(+)

2 ⟩ |2

(a)

(b)

j

j

L = 50

L = 50

⟨Xj⟩1,1
⟨Xj⟩2,2

⟨Xj⟩1,2
⟨Xj⟩2,1

|⟨E |Z(−)
2 ⟩ |2

FIG. 1. (a)(b) Energy density profiles 〈Xj〉α,β in the four
exact eigenstates |Γα,β〉 in the OBC system of size L = 50.
(c)Towers of the Z2 scar states for OBC found in ED. The
positions of the exact scar states |Γ1,2〉 and |Γ2,1〉 are marked
with stars.

in exact diagonalization (ED). As expected, these E =
±
√

2 scar states are related by Cph. Since they are non-
degenerate, their finite bond dimension are not related
to the exponential degeneracy of the E = 0 sector. Their
existence again demonstrates the violation of ETH, even
without worrying about potential subtleties in the degen-
erate space [29].

We can also calculate entanglement in |Γα,β〉 for any
cut and system size [18, 31]. In the thermodynamic limit,
across a cut between C2b and B2b+1 (bond-dimension
D = 2 cut), we find [30] the squared Schmidt values
1/2, 1/2, which gives the von Neumann entanglement en-

tropy SOBC,D=2
vN = ln 2. Cutting instead across B2b+1

and C2b+2 (D = 3), the squared Schmidt values are

2/3, 1/6, 1/6, and SOBC,D=3
vN = − 2

3 ln( 2
3 ) − 1

3 ln( 1
6 ) ≈

0.868.

For the states |Φi〉 in PBC and a large subregion, there
are two entanglement cuts, and the entanglement entropy
will be the sum of the OBC entropies associated with
each cut (and will remain finite in the thermodynamic
limit). We can then predict that for the states |ΦK=0/π〉,
the entanglement entropy will be SPBC

vN = SOBC,D=2
vN +

SOBC,D=3
vN + ln 2 ≈ 2.254.

Possible relation to Z2 scar states.- Turner et. al.
[13, 14] focused on the PXP model with PBC and iden-
tified a set of quantum many-body scar states (called Z2

scar states) through the overlap of eigenstates |E〉 with
the CDW states |Z2〉 = |10 . . . 10〉 or |Z ′2〉 = |01 . . . 01〉.
The most prominent such scar states have the largest
overlap and the smallest entanglement entropy compared
to nearby states, but there are also “bands” (or “towers”)
of weaker scar states close to each primary one. The con-

E

L = 26
periodic boundary condition

− |⟨E |Z(+)
2 ⟩ |2 − |⟨E |Z(−)

2 ⟩ |2

|⟨E |Ξ1⟩ |2

63%

78%

89%
92%

92%
90%

86%
79%

72%
62%

50%

32%

|⟨E |Ξ5⟩ |2

|⟨E |Ξ7⟩ |2

|⟨E |Ξ9⟩ |2

|⟨E |Ξ11⟩ |2

|⟨E |Ξ3⟩ |2 |⟨E |Ξ2⟩ |2

|⟨E |Ξ4⟩ |2

|⟨E |Ξ6⟩ |2

|⟨E |Ξ8⟩ |2

|⟨E |Ξ10⟩ |2

|⟨E |Ξ12⟩ |2
|⟨E |Ξ13⟩ |2

9%

FIG. 2. Overlaps of the SMA and MMA wavefunctions with
the eigenstates in the PBC system with L = 26. We also
list the overlaps with the primary Z2 scar states. The Z2

scar states are identified through the overlaps with the |Z(+)
2 〉

or |Z(−)
2 〉 states (for more clarity, we show negatives of these

overlaps).

secutive primary scar states have an almost equal energy
separation of ≈ 1.33. The scar states and this frequency
were proposed to be responsible for the strong oscillations
observed in quenches from the |Z2〉 state.

It is convenient to consider states |Z(±)
2 〉 = (|Z2〉 ±

|Z ′2〉)/
√

2, which have inversion quantum numbers I =
1 and I = −1 and carry momenta K = 0 and K = π
respectively if in PBC. For Lb even, the Z2 scar states
at energy E ≈ 0 are found to have I = 1 (and K = 0 in
PBC), while for Lb odd they have I =−1 (and K = π).
For a fixed Lb, I (and K in PBC) alternate between these
values when going from one primary scar state to the next
(and are the same within the band of weaker scar states
associated with each primary state). This is illustrated
in Figs. 1(c) and 2.

Turner et. al. [13, 14] proposed to approximate the
primary scar states using “forward scattering approxima-
tion” (FSA) starting from the Z2 state. We propose an
alternative picture starting from our exact E = 0 states.

First, we note that our exact E = 0 scar states are
in fact representative of the nearby scar states. For in-
stance, at L = 26, the nearby E ≈ ±1.34 scar states have
average Rydberg excitation number 〈E|nj |E〉 ≈ 0.3476
while 〈ΦK=π|nj |ΦK=π〉 ≈ 0.3355. Second, we note that
for OBC, the exact scar states |Γ1,2〉 and |Γ2,1〉, while not
being the primary Z2 scar states, belong to the first non-
zero-energy towers of scar states, as shown in Fig. 1(c).
Furthermore, we can understand these exact E = ±

√
2

scar states as “edge excitations” on top of the E = 0
states |Γα,α〉 (see [30]). We therefore conjecture that for
the PBC system as well, the nearby scar states can be un-
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derstood as quasiparticle excitations on top of the “vac-
uum” |Φi〉.

Motivated by these observations, we construct varia-
tional wavefunctions using SMA [32, 33] and generalize
it to MMA on top of our exact |Φi〉 states and aimed to
capture the nearby scar states. We start with the follow-
ing SMA wavefunction |Ξ1〉 = (|M1〉−(−1)LbTx|M1〉)/ξ1,
where

|M1〉=
Lb∑
b=1

Tr[Bσ1Cσ2. . .Mσ2b−1σ2b. . .BσL−1CσL ]|σ1. . .σL〉,

(8)
and ξ1 provides normalization 〈Ξ1|Ξ1〉 = 1. The matrices

M00 =

(
1 0
0 1

)
, M01 =

(
µ1 0
µ2 0

)
, M10 =

(
0 0
−µ2 µ1

)
are chosen such that the wavefunction satisfies
the Rydberg-blockaded constraint and I|M1〉 =
(−1)Lb−1|M1〉, hence I|Ξ1〉 = (−1)Lb−1|Ξ1〉 (see
Ref. [30]). We have also chosen the translation quan-
tum number of |Ξ1〉 to be (−1)Lb−1, which matches the
symmetry sector of the first E 6= 0 scar state overlap-
ping with the Z2 CDW. To make |Ξ1〉 as close to an
eigenstate as possible, we minimize the energy variance
σ2
H(µ1, µ2) = 〈Ξ1|H2|Ξ1〉 − 〈Ξ1|H|Ξ1〉2 at fixed L. At
L = 26, we find optimal parameters µ1 = −1.0876 and
µ2 = −0.6344, which give σ2

H = 0.0263 and the aver-
age energy 〈Ξ1|H|Ξ1〉 = −1.3147. Remarkably, the op-
timized state has over 63% overlap with the primary Z2

scar state at E ≈ −1.3386 found in ED, as shown in
Fig. 2. It is easy to check that µ′1 = −µ1, µ

′
2 = µ2 gives

|Ξ′1〉 = (−1)Lb−1Cph|Ξ1〉, which captures the scar state
with E ≈ 1.3386.

To capture other primary scar states and support
our picture of quasiparticle excitations, we examine
the following MMA wavefunctions |Ξn〉 = (|Mn〉 +
(−1)Lb+nTx|Mn〉)/ξn, where

|Mn〉 =

Lb∑′

b1,...,bn=1

Tr[Bσ1Cσ2 . . .Mσ2b1−1σ2b1 . . .

. . .Mσ2bn−1σ2bn . . . BσL−1CσL ]|σ1 . . . σL〉 , (9)

and the summation is constrained to have all bi distinct
and ξn is the normalization factor. Such an |Mn〉 de-
scribes some n-particle scattering state and is the most
primitive construction where we simply try hard-core ex-
clusion of the particles. For simplicity, we will take M
from the optimization of |Ξ1〉. Moreover, |Ξn〉 has quan-
tum numbers Tx = (−1)Lb+n and I = (−1)Lb+n, match-
ing the symmetry structure of the Z2 scar states. Un-
expectedly, Fig. 2 shows that the overlaps of such sim-
plest MMA wavefunctions and the primary scar states
become better with more quasiparticles, up to about
n ≈ Lb/2, while for larger n the overlaps start to de-
crease. The poorer performance for n > Lb/2 is not

surprising: For example, for n = Lb, the state |MLb
〉 =⊗Lb

b=1 |0〉2b−1(|0〉+µ1|1〉)2b+
⊗Lb

b=1(|0〉+µ1|1〉)2b−1|0〉2b−⊗Lb

b=1 |0〉|0〉, therefore |ΞLb
〉 ∼ |MLb

〉 but has sponta-
neous Tx symmetry breaking and is only a crude approxi-
mation to the true nondegenerate fully symmetric ground
state. Our MMA states with n close to Lb are similarly
expected to be only crude approximations to the actual
primary scar states and are seen to be spread over several
nearby scar states. On the other hand, the performance
of the states with n < Lb/2 is truly remarkable. Typ-
ically, when adding more quasiparticles without further
optimizations, such MMA states become worse with the
number of particles added, while our MMA have bet-
ter overlaps with the primary scar states. Furthermore,
our MMA states perform better than the FSA states for
2 ≤ n ' Lb/2. For reference, at L = 26, the FSA states
have overlap 69% with the scar states E ≈ ±1.33 and
68% − 72%, overlaps on the consecutive primary scar
states respectively [30]. This suggests that our exact
eigenstates at E = 0 provide better starting point for
understanding the scar states in the PXP model.

Let us further discuss these results. |Ξ1〉 and |Ξ′1〉 ∼
Cph|Ξ1〉 can be viewed as representing “elementary quasi-
particles” with energies ε− ≈ −1.31 and ε+ = −ε−; these
particles also carry inversion quantum number −1. It is
then natural to expect strong oscillations with frequency
ε+ in observables that flip the inversion quantum number.
(Observables in experiment and numerics that do not flip
I will show frequency 2ε+.) Indeed, even though the over-
laps of the Z2 initial state with the primary scar states
decrease exponentially with system size, the “quasiparti-
cle creation operators” can also act on many more states,
always “adding” roughly ε±. This argument resembles
the quasiparticle explanation [9] of strong oscillations in
the “weak thermalization” regime in Ref. [7], where the
initial state happened to be near the ground state. The
differences here are that the initial Z2 state is at T =∞
but is “close” to our special eigenstates |Φi〉, and that the
quasiparticles here can carry both positive and negative
energies.

By repeated application of the SMA construction that
gave us the |Ξ1〉 and |Ξ′1〉 states, we also expect additional
states with energies E ≈ (n+ − n−)ε+, n+, n− ∈ N. We
have demonstrated the (n+, n−) = (0, n) branch explic-
itly in Fig. 2. Interestingly, the same energy mε+ can be
obtained in multiple ways, which may explain the bands
of weaker scar states near the primary states.

Finally, we note that the presented simple “bond-
dimension-2” SMA wavefunctions cover cases where we
replace one B or one C with an “excitation,” or “excite”
two consecutive B2b−1, C2b matrices. One can also con-
sider exciting two consecutive C2b, B2b+1 matrices, which
would lead to new “bond-dimension-3” SMA wavefunc-
tions with more variational parameters and the corre-
sponding MMA wavefunctions. Our study shows that
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they can capture the primary Z2 scar states with even
higher fidelity [30], but since the improvement is only
quantitative, we presented the simpler bond-dimension-2
SMA.

Conclusions.- We discovered exact scar states in the
Rydberg-blockaded atom chain at T = ∞ that explic-
itly violate the strong-ETH and have constant entangle-
ment scaling in subsystem size. Our exact states show
translation symmetry breaking, which implies two-fold
degeneracy for PBC. The exact scar states for OBC have
the same bulk as for PBC and can have different edge
terminations leading to different eigenenergies, including
nondegenerate energies.

By constructing quasiparticles on top of the exact scar
states, we capture the primary Z2 scar states with high
fidelity. Systematic improvements for capturing the pri-
mary scar states, as well as study bands of weaker scar
states are therefore warranted. For example, even for
the SMA, is there a convergent construction that repro-
duces the first primary Z2 scar state and proves its ETH-
violating properties? It is also interesting to understand
the pattern of scar states in the PXP model more gen-
erally and how it compares with other instances of ex-
act scar states [17, 18, 20]. Studying additional models
with exact scar states and their stability to perturbations
would be beneficial for both of these questions. We leave
such explorations for future work.
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