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The structural and functional organization of biological tissues relies on the intricate interplay
between chemical and mechanical signaling. Whereas the role of constant and transient mechan-
ical perturbations is generally accepted, several studies recently highlighted the existence of long-
range mechanical excitations (i.e., waves) at the supracellular level. Here, we confine epithelial cell
mono-layers to quasi-one dimensional geometries, to force the establishment of tissue-level waves of
well-defined wavelength and period. Numerical simulations based on a self-propelled Voronoi model
reproduce the observed waves and exhibit a phase transition between a global and a multi-nodal
wave, controlled by the confinement size. We confirm experimentally the existence of such a phase
transition, and show that wavelength and period are independent of the confinement length. To-
gether, these results demonstrate the intrinsic origin of tissue oscillations, which could provide cells
with a mechanism to accurately measure distances at the supracellular level.

Supracellular organization plays a key role in es-
tablishing and maintaining structure, function and
homeostasis in tissues. In the early stages of embryonic
development, where features need to arise spontaneously
from a homogeneous state, this organization closely fol-
lows morphogenic chemical patterns. In the most general
case, however, chemical reactions, osmotic pressures and
mechanical forces all cooperate to determine tissue-level
organization. This is confirmed by an increasing number
of recent studies indicating that cell proliferation,
differentiation and motility are strongly impacted by the
mechanical properties of the microenvironment [1–5].
Several recent works reported that wave-like patterns of
the local cell velocity spontaneously appear in colonies
of epithelial cells. Those velocity waves have also been
observed in spreading epithelial sheets [6–9], regardless
of cell proliferation [10], and are correlated to oscillations
of the forces exerted by the cells on the substrate [11].
Such long wavelength patterns also appear in confined
geometries where cell migration is limited to local cell
rearrangements [12–16]. These waves are characterized
by a wavelength λ and a period T , and show a surpris-
ingly large spatial and temporal coherence. They can
be modelled either at the particle level [15] or using
continuum approaches [10, 16], based on a coupling
between cell motility and intercellular forces.

In this Letter, we explore whether period and wave-
length of collective wave excitation in epithelial cell
monolayers are intrinsically encoded in the activity of
the cell, or if they are affected by external constraints
such as a specific set of boundary conditions. To achieve
this, we analyzed the collective motion of epithelial cells
confined to a quasi-one-dimensional channel. The exper-

iments were accompanied by a series of numerical simula-
tions, based on a self-propelled Voronoi model (SPV) [17–
19], adapted to take into account the confining geometry.
Our results show that tuning the length of the confin-
ing channel drives a phase transition between a state of
global oscillations and a multi-nodal wave state. This
transition is a consequence of the interplay between lo-
cal cell active dynamics and global confinement. The
effect is robust and does not require detailed knowledge
of molecular processes but relies on a simple polarity-
velocity alignment mechanism studied in the physics of
dense active matter systems.

To confine cells to a quasi one-dimensional pattern,
we prepared adherent stripes on soft polyacrylamide gels
(E ' 40 kPa), as described previously [20] [outlined in
Fig. 1(a)]. Stripes of different length (LX = 100 to 2000
µm), but of the same width (LY = 40 µm), were pat-
terned on the same substrate. Epithelial Madin-Darby
Canine Kidney (MDCK) cells were then seeded on the
patterned substrates with initial concentration of 2.5 ±
0.5×104 cells/cm2. The samples were washed with fresh
medium 1h after seeding, then placed in the incubator
(37◦ C and 5% CO2) until the end of the experiments.
Cells were imaged in-situ unsing in-line holographic (de-
focus) microscope (see and Fig. SI-1 and supplemen-
tary information (SI), which include Ref. [? ]) [21?
] for ' 48 hours after confluence, gathering one image
every 10 minutes [e.g., Fig. 1(a)-middle]. Cell veloci-
ties were computed with a custom-made Particle Image
Velocimetry (PIV) algorithm with a final resolution of
20 min and 14 µm. To generate the kymograph, we
cropped the videos in time to consider only confluent
tissues, in an interval where the average absolute ve-
locity was higher than 4 µm/h [22]. We then averaged
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the horizontal component of the speed along the trans-
verse direction v‖ (x; t) = 〈vx (x, y; t)〉y. We removed low
frequency drifts using a Gaussian high-pass filter crop-
ping 50% of the signal at 700 µm and 10 h. The ky-
mograph in Fig. 1(b)-left represents the spatio-temporal
evolution of the velocity field over 22 hours and over
the whole stripe. A typical instantaneous velocity profile
[Fig. 1(c)-right ] displays periodic oscillations in space. To
quantify the period and the wavelength of these oscilla-
tions, we computed the autocorrelation function of the
kymograph g(δx, δt) = 〈v‖ (x, t) v‖ (x+ δx, t+ δt)〉x,t,
displayed in Fig. 1(c)-left. We observe an oscillating pat-
tern in the autocorrelation function, both along the spa-
tial and the temporal directions [Fig. 1(c)-right ]. This
pattern indicates the establishment of an extended multi-
nodal standing wave, with wavelength and period equal
to λ = 370 ± 30 µm and T = 4.7 ± 0.7 h, respectively
(errors represent the standard deviation, n = 59) [see
histograms in Fig. 1(c)-right ].

To obtain a detailed understanding of oscillations in
tissues, we consider a computational framework based
on a recently introduced self-propelled Voronoi model
(SPV) [17–19]. The model used in this study is similar to
that used in Ref. [19] to describe flocking transitions in
confluent tissues, but rather than using periodic bound-
ary conditions, we imposed confinement through a repul-
sive rectangular wall of size (LX , LY ) to reproduce the
experiments geometry. Full details of the model and its
implementation can be found in Ref. [18] (also see SI for
the parameters used). Briefly, the confluent cell mono-
layer is modeled as a two-dimensional network of Voronoi
polygons covering the plane (Voronoi tessellation of all
cell centre positions, see Fig. 2(a). Each configuration of
cells is described by the positions of cell centroids with
energy given by the commonly used Vertex Model [23],
which depends on the area and perimeter of each cell.
The parameters of the Vertex model include area and
perimeter stiffness constants (K and Γ ) and target area
and perimeter (A0 and P 0). These parameters were cho-
sen to describe a monolayer in a solid like regime (with

a shape factor p0 = P 0/
√
A0 = 2.5) [17, 24], to avoid

shear flows induced by the boundaries. As in Refs. [17–
19], we consider an overdamped dynamics, i.e., a force
balance between frictional force with the substrate, self-
propulsion at a constant velocity v0 along the direction of
cell polarity, ni, and mechanical forces between the cells
determined as a negative gradient with respect to cell
position of the SPV model energy functional. The value
of v0 can be set to match the experimental observations,
but does not affect the general oscillatory behavior. The
dynamics of the cell polarity ni, described by the angle
θi with the x-axis of the laboratory reference frame (i.e.,
ni = (cos(θi), sin(θi))) are

∂θi
∂t

=
1

τal
sin(θi − φi) + νri (t), (1)
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FIG. 1. (a) Top: MDCK cells are seeded onto a polyacry-
lamide (PA) gel patterned with fibronectin stripes (width: LY

= 40 µm, length: LX = 1500 µm). Middle: phase-contrast
image of a confluent tissue. Bottom: velocity field measured
by PIV. Velocities pointing in the positive (negative) x-axis
direction are shown in red (blue), in agreement with the ar-
rows reported under the image. (b) Left : kymograph repre-
senting the average horizontal velocity v‖(x; t) in time. Right :
an example of velocity profile along the dashed line. We re-
moved low frequency drifts using a Gaussian high-pass filter.
(c) To quantify the periodicity of oscillations, we calculate
the spatio-temporal autocorrelation of the kymograph (left)
and measure peak spacing along the spatial (top-right) and
temporal (bottom-right) coordinates (insets: distribution of
peak periodicity for n=59 independent stripes). Images in
panels (b - left) and (c - left) were smoothed for visualization
purposes with a low-pass Gaussian filter (σx=15 µm, σt=30
min).

with φi being the angle between the velocity of cell i
and the x-axis, and νri (t) being an orientational Gaus-
sian noise. The angular dynamics is thus controlled by
the interplay of rotational diffusion (kept constant in this
study) and the polarity-velocity alignment with rate τ−1al ,
with τal being the time required by the cell to reorient its
polarization in the direction of its velocity. This feedback
mechanism leads to oscillations in confinement, where τal
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FIG. 2. Self-propelled Voronoi Model for collective oscilla-
tions in confluent tissues. (a) Top: Example of tissue con-
figuration obtained from the integration of the SPV model.
Voronoi tessellation of the plane and centroid positions. Bot-
tom: Velocity field of the centroids of the tesselation. Ve-
locities pointing to the positive direction on the x-axis are
represented in red and to the negative direction in blue. (b)
Left : Kymograph representing the average horizontal veloc-
ity (v‖(x; t)) over time and right : its profile along the dotted
line. (c) Phase diagram of oscillation patterns in the SPV
model in the (τal − LX) plane. Two types of oscillations are
observed depending upon the system size LX(τal): Top left :
For large systems where LX > Lc

X(τal) the autocorrelation
of the kymograph shows multi-nodal oscillations whereas for
small systems (bottom left) where LX < Lc

X(τal) the autocor-
relation exhibits global oscillations.

Right : Simulation data points indicating whether the system
exhibits global (blue disks), multi-nodal (red diamond), or

no oscillations (grey squares symbols) for large values of the
feedback timescale (τal > τ cal ≈ 17 model time units). The
solid line delimiting the global and multi-nodal oscillation

phases is a power law fit of the transition data points
(Lc

X(τal) = aτ bal + c with a ' 32, b ' 0.62, c ' 13).

plays the role of an effective inertia, and the oscillations
are along the lowest-energy elastic modes of the mate-
rial [25]. This feedback mechanism is also at the origin
of flocks in non-confined tissues [19]. Simulations of con-
fined tissue layers show steady state oscillations akin to
those observed in experiments [Fig. 2(a)-bottom]. In the
following, we study the dependence of these oscillations

on the confining length LX and show that a feedback
mechanism for alignment (through τal) is key to observe
such mechanical waves in the SPV model. First we con-
sider the case of long confining channels, where multi-
nodal oscillations were observed experimentally [Fig. 1].
The simulation results displayed in Fig. 2(b) are obtained
for a system with the same transverse confining length
LY (about 3 cells in y−direction) and aspect ratio as in
the experiments in Fig. 1 (and a value τal = 0.3). We
observe a pattern in the x-component of the velocity,
v‖, and using the same analysis tools as in Fig. 1, we
extract the wavelength λSPV ≈ 22 model length units
and the period TSPV ≈ 8 model time units. Note that
by approximately matching the timescale of the model
to the experiments (through the cells velocity v0), one
would get from these simulation data λ ≈ 300 µm and
for the period T ≈ 2 hours. This indicates that this
model is able to reproduce the features observed in the
experiments, although some fine tuning of parameters
(τal, v0) is required for a quantitative match. Note that
although the instantaneous velocity profiles [Fig. 2(b)-
right ] and autocorrelation [Fig. 2(c)-top left ] plots appear
to be similar to the experiments, the full spatio-temporal
dynamics of the model [Fig. 2(b)-left ] do not correspond
to standing wave oscillations. If the system size LX is
decreased (keeping the value of τal constant), the num-
ber of nodes also decreases down to a point where the
system size can only accommodate a single spatial pe-
riod of oscillation, reaching a regime of global oscilla-
tion, where the direction of motion of all cells is coor-
dinated [Fig. 2(c)-top left ]. This transition, illustrated
in Fig SI-3, is shown in the τal − LX plane in Fig. 2(c)-
right. The feedback timescale also plays an important
role as no oscillations are observed if τal is too large (i.e.,
the noise dominates over the coupling), and the critical
length LcX at which one observes multi-nodal oscillations
increases with τal. In the small system regime, the oscil-
lation period increases linearly with the system size, as
previously reported [15, 16], and with τal (until oscilla-
tions eventually vanish for large values of τal), consistent
with the role of the feedback mechanism as an effective
inertia [25]. Therefore, the SPV model describes a tran-
sition controlled by the stripe length LcX(τal) between
global oscillations where all cells coordinate their motion
to a regime where groups of cells coordinate their motion
direction locally.

To verify this prediction, we varied the length LX of
the stripe between 100 µm and 2000 µm (examples be-
tween 200 µm and 1000 µm in Fig. 3), in order to tune the
system across the critical length LcX . In approximately
95% of experiments, in agreement with model predic-
tions, we observed two types of behaviors: 1) A global
movement of all cells alternating between rightward and
leftward motion [as seen from the autocorrelation func-
tion of the kymograph in Fig. 3(a)] and 2) The estab-
lishment of a multi-nodal standing wave with antinodal
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cells moving back and forth and cells at the nodes be-
ing alternately compressed and dilated [Fig. 3(b)]. The
incidence of the two behaviors strongly depends on LX ,
with a transition for LX ' λ. In the experiments with
LX < 200 µm, the global oscillation statistically domi-
nated. In this case, the period scales linearly with the tis-
sue size [Fig. 3(d), blue area], while the wavelength is im-
posed by the confinement. In large structures (LX > 500
µm), we only found multi-nodal waves, with the period
and wavelength independent of LX [Fig. 3d, red area].
Fig. 3(c) quantifies the transition, with on average 39
tissues per point, obtained from three independent ex-
periments. Our experiments confirmed the existence of
a self-sustained oscillatory mode in epithelial layers. Us-
ing the typical period and wavelength, we can define an
effective velocity uφ = LX/T ' 78 ± 13 µm/h, which is
independent of the pattern size. Even for small patterns
(LX <500 µm), this velocity is preserved as the period
scales linearly with the pattern length. We also note
that uφ is approximately ten-fold larger than the average
speed of individual cells within the epithelial layer (be-
tween 4 and 12 µm/h, depending on cell density [22, 26]).
Eventually, the spatial coherence of supracellular waves
exceeds the largest pattern observable with our micro-
scope.

Simulations using the SPV model show the emergence
of sustained collective oscillations in confined monolay-
ers. We identified two crucial conditions to produce
these oscillations: 1) The existence of a delayed feedback
between cell velocity and self-propulsion direction to
introduce a new timescale in the dynamics and 2) A
very limited number of cellular rearrangement, at the
limit of the solid-like regime. These ingredients allow
the system to be described by linear elasticity, and for
oscillations along the lowest energy elastic modes to
dominate the dynamics [25]. One could thus envision
tuning the oscillations by controlling cell-cell interactions
through RAB5 or cadherin-mediated junctions, without
affecting cells’ individual mobility [19, 27]. Contrarily
to experiments, where multi-nodal standing waves
are observed, the SPV model describes propagating
oscillations. Several reasons may explain this difference.
First, a standing wave is only established when the
wavelength exactly matches the boundary conditions.
Thus, models require fine-tuning of the pattern length,
while the intrinsic variability between cells could make
the real epithelium more adaptable to small variations
of the confinement size. Second, a different choice of the
coupling mechanism could also introduce a new timescale
in the model and better describe standing waves in con-
fined tissue. Two-dimensional SPV models are usually
adapted to describe spatially extended monolayers, while
the stringent confinement used experimentally makes
the system quasi-onedimensional and induces strong
constraints on the shape of cells near the boundary.
Such boundary effects are difficult to capture in the SPV
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FIG. 3. Dependence of oscillatory behaviour on the stripe
length. (a) The velocity field superimposed on phase con-
trast images for short stripes of length 200 µm and 300 µm
displays global oscillations, generating a characteristic two-
dimensional autocorrelation (right). Longer lines (500 µm
and 1000 µm) display multi-nodal oscillations (b), which give
rise a different pattern in the autocorrelation image (right).
Velocities pointing in the positive x-axis direction are repre-
sented in blue, those pointing in the negative x-axis direction
are represented in red, in agreement with the arrows reported
in the schemes under each image. For each length, we display
the frequency of each phenotype (c) and the characteristic
time and space periodicity (d) calculated. Bars represent the
standard error of the mean.

model due to the constraint of maintaining a Delaunay
triangulation (dual of the Voronoi tesselation) [18], but
do not seem to be essential to account for the oscillatory
dynamics observed experimentally. One could thus
consider building a one-dimensional continuum model
based on an elastic description of the monolayer [25]
in order to predict the transition between the different
oscillatory regimes observed experimentally.

In conclusion, we demonstrate that the typical period
and wavelength of epithelial tissue oscillations are
intrinsically encoded in the cells, and are not adapted to
external confinements. For this system, our SPV model
predicts a transition between global oscillation and
multi-nodal waves, the existence of which is confirmed
experimentally for a pattern length LcX ' 400 µm.
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From a biological perspective this transition could be
significant. If in small systems all the cells behave
similarly - the entire layer alternately moves back and
forth - in large systems cells located either at the nodes
or at the anti-nodes experience different mechanical
stimuli and may undergo different fates, which can ulti-
mately lead to supracellular patterning. The existence
of an intrinsic wavelength λ also provides an intrinsic
metric, likely encoded in the cell. It is interesting to
note that λ roughly corresponds to the typical size of
a Drosophila embryo (both length and circumference
approach 400-500 µm, while cell size is ' 15 µm), the
most studied model system for morphogenesis. Based on
this consideration, two important biological questions
arise. Is this intrinsic metric used by the organism to
measure distance inside a developing embryo? Does a
collective long range excitation allow cells to probe their
distant environment, in a timescale much shorter that
that allowed by their own motility?
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cellence of Multifunctional Architectured Materials ”CE-
MAM” (n AN-10-LABX-44-01). M.B. acknowledges fi-
nancial support from the ANR MechanoSwitch project,
grant ANR-17-CE30-0032-01 of the French Agence Na-
tionale de la Recherche. RS and SH the UK BBSRC,
award numbers BB/N009789/1 and BB/N009150/1-2.
MT acknowledges iREU NSF AWARD 1560390 and
LSAMP NSF grant 1302873.

∗ Mechanical Engineering Department, California State
University,Fullerton, California United State

† Giovanni.Cappello@univ-grenoble-alpes.fr
‡ Martial.Balland@univ-grenoble-alpes.fr

[1] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher,
Cell 126, 677 (2006).

[2] B. Trappmann, J. E. Gautrot, J. T. Connelly, D. G. T.
Strange, Y. Li, M. L. Oyen, M. A. Cohen Stuart,
H. Boehm, B. Li, V. Vogel, J. P. Spatz, F. M. Watt,
and W. T. Huck, Nature Materials 11, 642 (2012),
arXiv:NIHMS150003.

[3] G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J.
Melder, and R. K. Jain, Nature biotechnology 15, 778
(1997), 0030744722.

[4] M.-E. Fernandez-Sanchez, F. Serman, P. Ahmadi, and
E. Farge (2010) pp. 295–321.

[5] C.-M. Lo, H.-B. Wang, M. Dembo, and Y.-l. Wang, Bio-

physical Journal 79, 144 (2000).
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F. Jülicher, Current Biology 17, 2095 (2007).

[24] D. Bi, J. H. Lopez, J. Schwarz, and M. L. Manning, Soft
Matter 10, 1885 (2014).

[25] S. Henkes, Y. Fily, and M. C. Marchetti, Physical re-
view. E, Statistical, nonlinear, and soft matter physics
84, 040301 (2011).

[26] A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Si-
gal, D. K. Fygenson, and B. I. Shraiman, Proceedings
of the National Academy of Sciences 109, 739 (2012).

[27] C. Malinverno, S. Corallino, F. Giavazzi, M. Bergert,
Q. Li, M. Leoni, A. Disanza, E. Frittoli, A. Oldani,
E. Martini, et al., Nature materials 16, 587 (2017).


