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We investigate the turbulent dynamics of a two-dimensional active nematic liquid crystal con-
strained on a curved surface. Using a combination of hydrodynamic and particle-based simulations,
we demonstrate that the fundamental structural features of the fluid, such as the topological charge
density, the defect number density, the nematic order parameter and defect creation and annihi-
lation rates, are approximately linear functions of the substrate Gaussian curvature, which then
acts as a control parameter for the chaotic flow. Our theoretical predictions are then compared
with experiments on microtubule-kinesin suspensions confined on toroidal active droplets, finding

excellent qualitative agreement.

Experimental studies on active liquid crystals [1-19]
have opened, in the past decade, a Pandora’s box of
novel hydrodynamic phenomena with no counterparts in
passive complex fluids. Active liquid crystals are orien-
tationally ordered fluids consisting of self- or mutually-
propelled rod-shaped constituents, generally of biologi-
cal origin. Examples include in vitro mixtures of micro-
tubules and kinesin [1-4, 6-8], actomyosin gels [9, 10],
suspensions of motile cells, such as flagellated bacte-
ria [11-16] and sperm [17, 18], and “living liquid crys-
tals” [19]. Depending on the abundance of biochemical
fuel as well as the system density and geometry, these
active liquids have been observed to self-organize into
an extraordinary variety of spatiotemporal patterns, in-
cluding traveling bands [9] and vortices [16], oscillating
textures [4, 9], ordered arrangements of topological de-
fects [6, 17] and turbulent flows at low Reynolds number
2, 11, 12, 14, 15, 18, 19].

Starting from the pioneering work by Keber at al. [4]
on active nematic vesicles, unraveling the interplay be-
tween substrate geometry and the collective motion of
active fluids has surged as one of the fundamental chal-
lenges in the physics of active materials. In spite of the
variety of interesting phenomena discussed in the liter-
ature [20, 21] and with special emphasis in the case of
spherical active fluids [4, 22-25], a coherent theoretical
picture, which accounts for the threefold coupling be-
tween substrate geometry, orientational dynamics and
hydrodynamic flow, is still lacking.

In a recent work, we have investigated the dynamics
of a turbulent active nematic suspension of microtubules
and kinesin confined on a toroidal droplet [5]. Using a
combination of experiments and a Coulomb gas model
of active defects [26-28], we demonstrated that, because
of passive elastic interactions [29, 30], defects in active
nematics are sensitive to the Gaussian curvature of the
substrate. As turbulence progresses toward fully devel-
oped, this effect becomes weaker and weaker, but never
completely disappears. However, the Coulomb gas model
abstracts the full active nematic to a collection of point

particles, thus providing no information on the effect of
the hydrodynamic flow, beside the active propulsion of
the defects.

In this Letter we overcome this limitation and gen-
eralize the hydrodynamic theory of active nematics to
arbitrarily curved substrates. By focusing on the fully
developed turbulent regime, we demonstrate that topo-
logical defects can be controlled through the substrate
geometry. For the specific case of axisymmetric tori,
we show that this behavior originates from the interplay
between passive elastic interactions, driving the defects
toward regions of like-sign Gaussian curvature, and ac-
tive hydrodynamical effects, which result into a a non-
uniform defect-creation rate. Finally, we compare our
predictions with experiments on microtubule-kinesin sus-
pensions confined to toroidal active droplets, finding ex-
cellent qualitative agreement.

Let » = r(z!,2%) be the position of generic surface
embedded in R? and parametrized by the coordinates
(!, 22). Furthermore, let g; = 9;7 be a basis of covari-
ant vectors on the tangent plane, so that g;; = g; - g;
is the surface metric tensor. A configuration of an ac-
tive nematic monolayer constrained to lie on the sur-
face can be described in terms of the local velocity field
v = v'g; and nematic tensor Q@ = Q%g;g;, where

FIG. 1.

(a) Schlieren texture and (b) flow on a toroidal active
nematic obtained from a numerical integration of Egs. (1).
Dark regions correspond to local configurations of the director
parallel or perpendicular to the meridians of the torus, while
red (blue) indicate regions of positive (negative) vorticity.



QY = S(nin? — ¢ /2), with S the nematic order pa-
rameter and n = n'g; the nematic director, such that
n'n; = 1. Incompressibility requires V;v* = 0, with V;
the covariant derivative. The hydrodynamic equations
governing the evolution of the active nematic fluid of den-
sity p and viscosity 1 can be expressed in covariant form
as follows [31]:

Dot ) ) . .
P Dijf =n(Agp+ K)v' = V'P —(v' +aV;Q%Y, (la)
DQij A i 1 Ak J ki 1 .
_ 2 iy _ = 7 i ZHU 1
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where D/Dt = 0;+v*V}, is the covariant material deriva-
tive, Ag = gV, V, is the covariant (or Bochner) Lapla-
cian and P the pressure. The term nKv?, with K the
Gaussian curvature, represents the additional shear force
arising from the fact that streamlines inevitably converge
or diverge on surfaces with non-zero Gaussian curvature,
whereas —(v?, with ¢ a friction coefficient, is the damp-
ing force arising form the possible interaction with the
external environment. The last term in Eq. (la) arises
from the divergence of the active stress o* = aQ, where
the constant o embodies the biochemical activity of the
system. In Eq. (1b), A is the flow-alignment param-
eter, u = (VI + VJv')/2 is the strain-rate tensor,
w= eijVivj is the vorticity, with €;; the anti-symmetric
Levi-Civita tensor and eg = gikejk, ~ is the rotational vis-
cosity and HY = —§F/3Q% is the molecular tensor de-
scribing the orientational relaxation of the system, with
F the free-energy. Following Kralj et al. [32], we express
F as:

ast . a ..
F= /dA [; Qi; QY + f (QiQ7)?
%KQUQ” + ke Qi K K|
(2)

where as and a4 are constants, t is the reduced tem-
perature and is negative in the nematic phase, K;; =
—g; - 0;IN, with IN the normal vector, is the extrinsic
curvature tensor and k, ko4 and k. are phenomenological
elastic constants detailing the cost of distortions in Q, the
cost of forming an ordered phase where K # 0 and the
coupling between the order and the extrinsic curvature,
respectively [33-35].

Egs. (1) describe the dynamics of an active nematic
monolayer on a generic curved surface. To provide an ex-
ample and make contact with experiments, we have con-
sidered the specific case of an active nematic constrained
on an axisymmetric torus (Fig. 1). Unlike the sphere,
the torus is a closed surface having non-uniform Gaus-
sian curvature. The latter is positive and maximal on the
outer equator, negative and minimal on the inner equa-
tor and varies smoothly over the surface, resulting into a

k o
t3 ViQpV'Q* —

(a) 00817 CUTR (b) o SR
Q o S St
z 0 g Jl o ey
g 0003 la] 170 < \
b a1 2 0 3 |
2 D E 2
E ¢ - 2
5 X ) =0 X X

-0.08 ——— e —— L 005 0 o0s

K K

(c) 800 T T (d) 038 Annihilation —

.

Shear rate
B
S
(=}
Rate density
(=)
N

ol

105 0 0.5 0053 0.5

FIG. 2. Structural properties of toroidal active nematics
versus Gaussian curvature, obtained from a numerical inte-
gration of Egs. (1). (a) Topological charge density p.. When
turbulence is fully developed, increasing the activity has lit-
tle effect on p., but causes a linear increase in the number of
defects (inset). (b) Number density of +1/2 (ny) and —1/2
(n—) disclinations. In contrast to passive liquid crystals on
curved surfaces, both densities are larger in the interior of the
torus, where the Gaussian curvature is negative. (c) Annihi-
lation and creation rate densities are both increased in the
interior of the torus. (d) Shear-rate u’®, with 6 and ¢ the
coordinates along the meridian and parallel respectively. All
quantities are rescaled as explained in the main text.

vanishing Euler characteristic: x = 1/(27) [ K dA = 0.
When a torus is coated with a nematic liquid crystal, this
property implies global topological charge neutrality: i.e.
> 5n = 0, with s,, the topological charge, defined as the
winding number of the nematic director along a path en-
circling the n—th defect. In practice, s, = £1/2, due to
the prohibitive energetic cost of higher-charge disclina-
tions in two dimensions [5].

Egs. (1) have been numerically integrated using the
vorticity /stream-function approach [31]. To make Egs.
(1) dimensionless, we rescale length by the cross-sectional
radius of the torus, b, time by the relaxational time scale
k/(vb?) of the Q—tensor and mass by pb?. In these units,
weset k=1, k. =0, koy =0, 7 = 0.1, ( = 0.1 and
A = 0.5. The torus aspect ratio is £ = a/b = 2, with a
the radius of the central ring.

Figs. 1a,b illustrate a typical configuration of the ne-
matic director and the vorticity. As in the case of a
flat substrate, active nematics are found in a turbulent
regime when the active length scale ¢, = \/k/|«/|, result-
ing from the balance between active and passive stresses
[36], is much smaller than the torus cross-sectional radius
b and the frictional screening length ¢ = /n/(. In this
regime, the flow is organized in vortices of average size ¢,
and the director is decomposed in domains surrounded by
+1/2 disclinations. While on the plane these structures
are uniformly distributed, Fig. 1 shows a higher den-
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FIG. 3. Structural properties of toroidal active nematics

versus Gaussian curvature, obtained from the Coulomb gas
model, Egs. (3). In all plots, length is rescaled by the cross-
sectional radius b, time by b%/(uk) and velocity by uk/b. Ac-
tivity is controlled by simultaneously varying the dimension-
less defect velocity vp and the number N, taking advantage of
the fact that vo ~ v/a and N ~ «a (Fig. 2a inset). Specifically,
we set v9 = 64/500/N. (a) Snapshot of a typical configruation
(b) Topological charge density versus Gaussian curvature for
varying vo and N. (Inset) The number of annihilations scales
quadratically with the number of defects, hence with a. (c)
Number density of +1/2 (n4) and —1/2 (n—) disclinations.
(d) The annihilation and creation rate density. In all simula-
tions, ¢ = 0.1 and |¢4| = 0.1 in the units described above.

sity of vortices in the interior of the torus. These simple
observations already suggest a correlation between the
substrate geometry and the spatial organization of the
coherent structures emerging within the active flow. In
order to quantify this effect we have measured the time-
averaged topological charge density p. of the defects as
a function of the Gaussian curvature K (Fig. 2a). We
find that p. increases monotonically with K and attains
its largest magnitudes along the equators. This behav-
ior originates from the elasticity of the nematic phase.
Assuming the nematic order parameter constant outside
the core of the defects, Eq. (2) approximates the one-
elastic-constant Frank free-energy. In the presence of a
distribution of topological defects, the latter is given by
Fr =k/2 [dA|Ve]? [29, 30], with ¢ a geometric poten-
tial given by Apgp = p. — K, with App the Laplace-
Beltrami operator [31]. This implies that the lowest
energy state is attained when p. = K and ¢ = const.
Although in the turbulent regime investigated here the
system is well away from its lowest free energy state,
topological defects are still subject to elastic forces at-
tracting them to regions of like-sign Gaussian curvature,
thus p. ~ K.

This result is consistent with prior experiments and
numerical simulations using a Coulomb gas model [5],

and can be understood based on the mechanical proper-
ties of nematic liquid crystals at equilibrium. Hydrody-
namics, however, enables us to go beyond this and shed
light on the non-equilibrium nature of defect prolifera-
tion. Fig. 2b shows the number density n4 of positive
(solid line) and negative (dashed line) defects, such that
pe = (ny —n_)/2. Both densities are essentially lin-
ear function of K but, surprisingly, both have negative
slope. This implies that positive defects are denser in
the negative Gaussian curvature region, in direct con-
trast to the passive case, in which the positive defects
are only found in the positive Gaussian curvature region
[37, 38]. At K = 0, ny and n_ crossover, so that, at
K = 0, the topological charge density vanishes, as ob-
served in Fig. 2a. This beahvior is, in turn, correlated
with the configuration of the shear-rate (Fig. 2c) and
the defects creation/annihilation rate (Fig. 2d), that are
both monotonically decreasing with the distance from the
inner equator of the torus.

Given that the passive elastic forces always drive the
positive defects towards the regions of positive Gaus-
sian curvature, the increased density of the positive de-
fects in regions of negative K must originate from non-
equilibrium effects. We conjecture that the higher normal
curvature in the interior of the torus results into a higher
shear-rate in the flow (Fig. 2c¢), which, in turn, leads to
a stronger distortion of the nematic director and a larger
defect creation rate (Fig. 2d). On the other hand, the ge-
ometrical forces due to the Gaussian curvature biases the
positive (negative) topological charge toward the exterior
(interior) of the torus, but, because of the short mean-
free path of the defects, this does not lead to a complete
segregation of the topological charge. As a consequence,
the density of both positive and negative defects is larger
in the interior of the torus, although their difference is
proportional to K.

To test this hypothesis, we use a variant of the
Coulomb gas model of active nematic defects [4, 5, 26—
28], augmented with a non-uniform defect creation dis-
tribution reproducing the outcome of the hydrodynamic
simulations. Defects are modelled as massless particles
on the torus, whose position 7, and orientation p,, are
governed by the following equations of motion:

dr,

dp,, o
" Bt 9

dt npn )

where vy is the speed at which defects are propelled
by their self-generated flow and is non-zero only for
+1/2 defects [27], u is a mobility coefficient, ¢! and
¢, are uncorrelated translational and rotational noises
and p, - p# = 0. In addition, F, = -V, Fp,
where  Fp = —47%k > onsm Sn5mG (T, rm)  +
2wk Yy, sp [dAG(ry,*)K(r), with G(r,,r,) the
Laplacian Green function on the torus [31], is the elastic
force resulting from the inter-defect interactions and the
interaction between the defects and the local Gaussian



curvature.

Egs. (3) are solved numerically for fixed number of
defects. Every time two oppositely charged defects come
within a distance 7, = 2a x 1073, representing the defect
core radius, they annihilate and a new pair is created
at a random position. Consistent with the outcome of
our hydrodynamic simulations (Fig. 2d), the probability
distribution for pair creation is chosen to be a linearly
decreasing function of K, namely: pereation ~ 1 — b?°K
(up to normalization factors). We plot p. , ny and the
creation and annihilation rate densities obtained from an
integration of Egs. (3) in Fig. 3. Comparing with the
hydrodyamic results in Fig. 2, we see remarkable agree-
ment. As in our hydrodynamics simulations, the topo-
logical charge density p. from the Coulomb gas model
is monotonically increasing with the Gaussian curvature
(Fig. 3b) and essentially unaffected by the system ac-
tivity. Nevertheless, the number density of both positive
and negative defects, n4, is higher in the interior of the
torus (Fig. 3c), in spite of the elastic interaction between
the defects and the substrate forcing the +1/2 defects
towards the exterior of the torus. The defects annihi-
lation and creation rates match each other exactly and
are increasingly larger in the region of negative K (Fig.
3d) as activity increases. Consistent with our hypothe-
sis, a higher pair creation rate inside the torus leads to
a larger density of positive defects in regions of negative
Gaussian curvature, even though p. ~ K. As elasticity
driven-defect unbinding preferentially occurs in regions
of vanishing Gaussian curvature [37] and is independent
on activity, the origin of this process is ultimately hydro-
dynamical.

To further test the relevance of our theoretical predic-
tions, we turn to experiments on microtubule-kinesin sus-
pensions constrained to the surface of toroidal droplets [5,
39]. The kinesin motors are powered by 36 uM of adeno-
sine triphosphate (ATP). In addition, we include an ATP
regeneration system, phosphoenol pyruvate and pyruvate
kinase/lactic dehydrogenase, and a depletant, polyethy-
lene glycol (PEG), which causes the microtubules to as-
semble on the surface, where they form a nematic liquid
crystal [31]. We then image the lower half of the toroidal
droplet using confocal microscopy and project a region
along the gravitational direction onto the plane (Fig. 4a).
The local Gaussian curvature and @ are constructed us-
ing techniques from the computer vision literature [5].
We consider various regions on the surface of a given
torus, calculate the mean Gaussian curvature in each re-
gion, (K), and correlate it with the time-averaged p. and
the time-averaged S in the region, as shown in Fig. 4b
for the representative example toroid in Fig. 4a. We also
consider the defect densities individually and correlate
ny with (K) (Fig. 4c). Consistent with our theoretical
results, we find that p. and S depend linearly on (K) with
a positive slope. In addition, we also observe that n4 are
linearly dependent on (K) with a negative slope, corre-
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FIG. 4. Results from experiments with microtubules-kinesin
suspensions. (a) Snapshot of the experiment. (b) Topologi-
cal charge density and nematic order parameter (Inset). (c)
Number density of +1/2 (red) and —1/2 (blue) disclinations.
(d) Annihilation and creation rates. These results correspond
to observations on a torus with aspect ratio 1.8 with minor
radius 334 pm. The error bars in (b-d) correspond to the
standard error of the mean. We note that the error in (c) is
smaller than the plotted points. Scale bar in (a): 200 wm.

sponding to a higher defect density in the interior of the
toroidal droplet than on the exterior. Qualitatively, we
observe this same behavior for a variety of toroids made
with different aspect ratio and cross-sectional radius.

At the ATP concentration used in our experiments,
Q evolves slowly enough to track the defects in time
using a combinatorics-based particle tracking algorithm
[40]. The individual trajectories for the s = +1/2 and
s = —1/2 defects allow us to determine the creation and
annihilation events; we consider the beginning and end-
ing of a single trajectory as one-half of a defect creation
or annihilation event, respectively. We then divide the
number of creation and annihilation events in a region
by its area and the total time of the experiment to get
the creation and annihilation rate density. We find that
these rates are equivalent and that they are larger in re-
gions of negative (K) than in regions with positive (K),
in agreement with the theoretical results. This is shown
in Fig. 4d for the toroid in Fig. 4a. This agreement oc-
curs without any dependence on the extrinsic curvature
(ke = 0) or explicit coupling between S and K (ka4 = 0),
highlighting the primary role of the intrinsic geometry
and of the hydrodynamics.

In summary, we have introduced a generalization of
the hydrodynamic theory of active nematics to arbitrar-
ily curved sufaces. We applied this generalization to the
specific case of an extensile active nematic on the surface
of a torus and probed the effect of the substrate Gaussian
curvature on the active nematic. Thanks to a combina-
tion of numerical simulations and experiments we have



established that the structure of the nematic phase is con-
trolled by the substrate curvature in a twofold way. First,
the activity-induced hydrodynamic unbinding of defect
pairs is enhanced by curvature, leading to non-uniform
nematic order and defect number density. Second, the
passive elastic interactions between the defects and the
underlying substrate geometry tends to bias the topo-
logical charge in regions of like-sign Gaussian curvature.
We emphasize that the hydrodynamic approach devel-
oped here is general and applicable to situations other
than that we have focused in this work.
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