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We study the dynamical structure factor of the spin-1 pyrochlore material NaCaNi2F7, which is well de-
scribed by a weakly perturbed nearest-neighbour Heisenberg Hamiltonian, Our three approaches—molecular
dynamics simulations, stochastic dynamical theory and linear spin wave theory—reproduce remarkably well
the momentum dependence of the experimental inelastic neutron scattering intensity as well as its energy de-
pendence with the exception of the lowest energies. We discuss two surprising aspects and their implications for
quantum spin liquids in general: the complete lack of sharp quasiparticle excitations in momentum space and
the success of the linear spin wave theory in a regime where it would be expected to fail for several reasons.

Quantum spin liquids (QSLs) [1] are enigmatic phases of
matter characterized by the absence of symmetry breaking
and conventional quasiparticles (magnons). The search for
QSLs in actual magnetic materials has targeted materials with
low spin and geometric frustration [2]. Indeed, while there
have been significant efforts to synthesize quantum spin liq-
uid materials in spin-1/2 systems in two dimensions, fewer ef-
forts have been devoted to three dimensions, for a review see
Ref. [3]. This strategic choice is not without reason: higher
spin and number of dimensions typically suppress quantum
fluctuations and favor magnetically ordered states over QSLs.
However, it is now clear that this perspective is too pes-
simistic: we know that certain types of spin liquid can exist
in d=3 but not in d=2 [4, 5]. Therefore QSLs need not be
restricted to d=2 and S=1/2 exclusively [6–8].

Despite some recent advances, our understanding of low-
spin Heisenberg QSLs in three dimension limited as they
are often beyond the scope of exact or controlled approxi-
mate theoretical schemes. We are at a loss to describe either
their ground states or excitation spectra, unlike Ising mod-
els like spin ice, where the simplest quantum versions [4, 5]
are amenable to quantum Monte Carlo (QMC) simulations [9,
10]. Experiments are therefore an indispensable guide for our
understanding of these magnets [11].

The quest for QSLs relies heavily on characteristic signa-
tures in the excitation spectra: while QSL ground states are of-
ten largely featureless, their excitations can be quite unusual,
including in particular fractionalized [12, 13] quasiparticles
such as spinons in the spin-1/2 Heisenberg antiferromagnetic
chain [14–16], Majorana fermions in the Kitaev honeycomb
model [17–19], and photons in the U(1) spin liquid [4, 5, 10].

The dual challenge is thus to identify novel phenomena
in experimental data and to devise a theoretical framework
for understanding the underlying behavior. Here we report
progress for the fluoride pyrochlore NaCaNi2F7 [20]. Its mag-
netic Ni2+ ions have spin S = 1 and reside on the three-
dimensional pyrochlore lattice (Fig. 1). Strong geometrical
frustration and short spin length may produce a QSL [7, 21].

We analyze the magnetic excitation spectrum [22], includ-
ing new, hitherto unpublished data. Our three complemen-
tary theoretical approaches reproduce the dynamical struc-

Figure 1. (a). Pyrochlore lattice in one cubic unit cell. (b). Nearest-
neighbor and next-nearest-neighbor interactions.

ture factor S(q, ω) for all momenta q and for a broad range
of energies ω; the quality of the agreement differs between
methods at the highest energies. At low energies, we find
the well-known pinch-point motifs; at intermediate energies,
characteristic structures complementary to the pinch points
appear [23, 24]. Overall, the main disagreement between ex-
periment and theory appears at the lowest energies, as dis-
cussed below.

Given the abovementioned challenges in d=3, the success
of our relatively simple approaches is as striking as it is en-
couraging. We therefore include a discussion of the broader
implications of our results about the nature of quantum spin
liquid dynamics, which we believe is applicable more broadly.

We emphasize that none of our theoretical approaches relies
on the existence of magnons or other quasiparticles with well-
defined momentum q and energy ω, nor do they require the
presence of delicate quantum coherence. Nonetheless, even
linear spin wave theory is successful in this context!

The main results are presented as a comparison of scattering
intensity for NaCaNi2F7 as a function of momentum (Fig. 2)
and energy (Figs. 3, 4). For the methodologically interested
reader, we collate all technical information in a set of self-
contained appendices [26].

Model and methods: We use the Hamiltonian (Fig. 1)
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Figure 2. (Color) Dynamical structure factor in (a) [HHL] and (b) [H0L] planes at constant energies: experiment compared to linear spin wave
theory, molecular dynamics, and the stochastic model. Data in (a) were collected on CNCS and in (b) on MACS. Raw neutron intensity has
been corrected by the magnetic form-factor for Ni2+ [25]. To focus on wavevector dependence, data are rescaled for each value of energy, for
experiment, by the maximum magnetic scattering intensity; and by the maximum intensity in the MD simulations for the six theory panels,
with an additional factor βω between MD/SLN and LSWT (Eq. (21) in [26], see text), N (ω) = βωSMD

max(ω), where β = 1/kBT .

where Roman subscripts refer to lattice sites and Greek su-
perscripts to Cartesian spin components. The interaction ma-
trix Jµνij [30] is parameterized by four exchange parameters
J01 = (J2, J4, J4;−J4, J1, J3;−J4, J3, J1) with J1 = J2 =
3.2(1) meV, J3 = 0.019(3) meV, J4 = −0.070(4) meV for
nearest neighbors. The interaction matrices for other pairs
follow from appropriate symmetry transformations. These pa-
rameters and Heisenberg exchange for next-nearest-neighbors
JNNN =−0.025(5) meV were previously extracted by some
of us from equal-time correlations [22].

The three methods utilized are: firstly, molecular dynamics
(MD) simulations of the pyrochlore magnet [31], where the
classical Landau-Lifshitz equations of motion for the spins
are integrated numerically and averaged over initial condi-
tions obtained from Monte Carlo simulations at temperature
T = 1.8 K; secondly, linear spin-wave theory (LSWT) to de-
scribe spin dynamics near a low-energy state with a similar av-
eraging over initial conditions; thirdly, a self-consistent Gaus-
sian approximation adapted to frustrated magnets [32] and ex-
tended into a stochastic model by Conlon and Chalker [33],
which we refer to as stochastic large-N (SLN). See Supple-
mentary Material [26] for details.

The central object of investigation are the dynamical spin
correlations, whose Fourier transform is the structure factor
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∑
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The classical expression is given above and the quantum ex-
pression is sensitive to time order of the spin operators [26].

Throughout this work, we rescale the two “classical” ap-
proaches MD and SLN by ω/(kBT ) to make comparison with
LSWT. This factor crudely reproduces the effects of quantum
fluctuations at low temperatures [26].

Results: S(q, ω) obtained experimentally and by the three
theories is depicted as a function of wavevector q in a set of
cuts at various energies, Fig. 2, and as a function of energy ω
along a set of paths through reciprocal space, Fig. 3.

Fig. 2 displays normalized structure factor along momen-
tum cuts in the [HHL] and [H0L] planes at energies ω = 0.5,
2, 4 and 8 meV. At low energies, the pinch points charac-
teristic of a U(1) spin liquid are clearly visible. Their pres-
ence implies that each tetrahedron has vanishing total mag-
netization [34, 35]. In general, however, adjacent tetrahedra
cannot both be in S = 0 states, as their total spin operators
do not commute. Therefore, while for the classical theories,
the pinch points sharpen as

√
T as T is lowered [36], for

S = 1/2 they were found to be quite smeared out [21], be-
coming sharper as S increases. For S = 1, a prediction for
the full-width at half maximum of the pinch point in the static
correlations at [002] of δqFWHM

PP = 4π/3 [7] is comparable to
the value ≈ π extracted form the low-T experimental data.

As the energy increases, the overall intensity distribution
changes little initially, but what sharp features were present
wash out; e.g., the intensity minimum in the scattering rhom-
bus around [202] is slowly filled in and the pinch points
broaden. At higher energies, phonons pollute the experimen-
tal signal at large q, but a rearrangement of the weight is
still discernible, with the area around the pinch-points grow-
ing into prominent pairs of “half-moons” features at 8 meV,
a dispersing complement to the pinch points [23, 24]. This
feature is present in MD and LSWT, but not in SLN, which is
relaxational and does not capture spin precession.
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We next turn to the energy dependence of the data, Fig. 3,
with additional data from a different neutron instrument [26],
Fig. 4. The general shapes of experiment and MD/LSWT are
very similar—a broad signal with a vertical appearance rem-
iniscent of a fountain. SLN fails to capture the high-energy
structure, which can therefore be ascribed to the precessional
spin dynamics not captured by this method; otherwise, the
theory plots agree with one another.

The largest disagreement between theory and experiment
occurs at low frequencies, especially around [220], where a
large increase of the experimental signal below 1 meV is not
reflected in theory, Fig. 4. More on that below.
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Figure 3. (Color) Energy dependence of dynamical structure factor
along momentum cuts [22L] and [HH2]. Neutron scattering intensity
is in absolute units [26]. Rescaled MD and LSWT in particular repro-
duce well the shape of the broad dispersive curve, disagreeing mainly
at the lowest energies; SLN fails to capture high-energy structure.

Discussion: We next address the remarkable agreement be-
tween theory and experiment (with the exception of the lowest
energies) on the one hand and between MD and LSWT on the
other. The latter is quite unexpected: there, after all, are sev-
eral reasons why LSWT should break down in a S=1 Heisen-
berg pyrochlore antiferromagnet. Instead, it works unreason-
ably well, as detailed above. The inauspicious ingredients are,
firstly, absence of a state with long-range order around which
to perturb, the existence of which would have guaranteed a
Goldstone mode as long-lived magnon excitation. Other mod-
els without long-range order, such as the S = 1/2 and 1
Heisenberg chains, instead show a breakdown of LSWT, as
their respective low-energy descriptions involve not the gap-
less magnons but either fractionalized S=1/2 spinons or Hal-
dane’s gap. Secondly, the spin length S=1 really is small, so
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Figure 4. (Color) Comparison of dynamical structure factor be-
tween experiment and MD/LSWT. (a) Energy-dependence at q =
[220], [22 1

2
] and [221]. Log scale is used for the y-axis to in-

clude the quasi-elastic signals. (b) Momentum dependence along
[22L] at ω = 2,4,6 and 8meV. The neutron scattering intensity
Iexp(q, ω) is background subtracted and normalized by the total
spectral weight

´
dωd3q Iexp(q, ω). MD (solid lines) and LSWT

(dashed lines) data Scalc(q, ω) are normalized by (2/3)S(S + 1),
under an isotropic approximation to the sum rule.

that one might expect considerable quantum renormalization
effects, all the more so since the classical local exchange field
is reduced as a result of geometric frustration from 6S in a
ferromagnet to 2S. Finally, a finite fraction of the spin-wave
modes live at or near zero energy in LSWT, which implies the
onset of the many-particle continuum already at the bottom of
the single-particle spectrum. Above this onset, spin waves are
expected to show damping [37].

LSWT actually finds another route to work: it is not a the-
ory of universal low-energy hydrodynamic excitations, but of
the statistically typical behavior at short time/high energies
scales, which fails at long times/low energies, thus in the end
conforming to at least a subset of the above expectations.

To see this, think of the (near-)zero frequency modes
as responsible for “slow” motion between (near-)degenerate
ground states, and of “fast” oscillatory spin waves—with fi-
nite frequency and scattering rates—around these as driv-
ing this motion [31, 33, 38]. Statistically, the spectra of
these fast oscillations appear not to change as the slow modes
evolve, making the broad finite-frequency spectra we consider
here effectively time-independent. Indeed, we do find self-
averaging in practice as only a few configurations are needed
to obtain smooth spectra for large system sizes [26], in keep-
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ing with the observation that disorder is weak in that it occurs
mainly in off-diagonal terms of the dynamical matrix, with
the diagonal exchange field nearly uniform. As expected for
weak disorder in three dimensions, spin waves away from the
band edges are delocalized, as diagnosed by the scaling of
their inverse participation ratio with the system size, see [26].

This also explains why spin-wave scattering does not inval-
idate the picture: LSWT predicts a broad continuum in fre-
quency space to begin with, and any further broadening of an
individual mode due to its finite lifetime is small in temper-
ature T , and therefore parametrically smaller than the total
(largely T -independent) bandwidth. Thus, unlike in the case
of an initially sharp mode, lifetime broadening is insignificant.

In the low-T limit, zero modes have no dynamics in LSWT
(their frequency is zero). Motion along the ground-state mani-
fold is thus frozen out and LSWT fails to capture their motion
arising from scattering off high-energy excitations, which is
present in MD and SLN theories. It is thus clear that our
comparison is not particularly sensitive to the details of the
low-frequency physics.

Typically, the universal low-energy features of spin liquid
ground states are topological in nature and as such invisible
to experimental probes that couple to local correlations [39].
Indeed, it has been a common recent theme in quantum mag-
nets that the structure factor away from low energies is most
instructive. While this part of the spectrum is not univer-
sal, and may not contain enough information to pin down the
nature of the quantum spin liquid unambiguously, it permits
simple modeling and detailed comparison with experiments
(e.g., of deconfined spinons for weakly coupled Heisenberg
chains [15]). Furthermore, the presence of disorder and freez-
ing [20, 40] likely renders the low-energy features fragile,
thus requiring additional modeling [41]. More generally, fur-
ther small terms in the Hamiltonian, potentially missed by
our fitting procedure, may redistribute low-energy spectral
weight, and even lead to a conventional ordered state at the
lowest termperatures; in this case, the modelling presented
here applies to the proximate spin liquid regime at temper-
atures/energies above the small transition energy scale. Fi-
nally, an accurate treatment of low-energy features requires
going beyond the simple version of our classical-quantum cor-
respondence factor βω.

All these complications should not distract from an impor-
tant feature seen in experiment and reproduced in theory: the
complete absence of sharp quasiparticle peaks characteristic
of magnons with well-defined momenta and energies. It re-
flects the spatially disordered nature of the spin configura-
tions in our classical theory and raises the question about the
appropriate description of the corresponding low-temperature
quantum state. An interesting scenario is that small-spin py-
rochlore Heisenberg antiferromagnets exhibit no well-defined

quasiparticle excitations at all.
The final basic issue raised by our study is the role of the

“quantumness” in this compound. The relative success of
fully classical modeling across a broad range of energies, at
temperatures far below the Curie-Weiss scale, is rather unex-
pected. The low-energy discrepancies discussed above seem
like a small price to pay for the huge simplicity of our theo-
retical approaches. This calls for experiments on analogous
compounds with larger spins, to investigate whether the low-
energy regime will be better modeled while retaining the other
features already successfully accounted for.

Employing semi-classical modelling for what is expected
to be a quantum spin liquid is not without precedent. This
was done for the Kitaev honeycomb model [17], whose ex-
act solvability allows for a reliable comparison in detail
[42]. There [43], the high-frequency portion of the re-
sponse was accounted for modulo a reasonable amount of
data post-processing, while the physics related to the emer-
gent fluxes at low energies—the most direct manifestation of
fractionalization—remained inaccessible.

Similarly, qualitative signatures of a quantum spin liquid
may be visible only at the lowest energies. If so, the chal-
lenge is to explain a rapid crossover into a classical regime,
where quantum mechanics mainly enters in the mode occupa-
tion numbers. An alternative would be the absence of a qual-
itatively distinct low-frequency quantum spin liquid regime
altogether. This could either happen intrinsically, if the emer-
gent low-energy description is amenable to a semi-classical
description; or extrinsically, in that the quantum spin liquid
behavior is so fragile that disorder or coupling to phonons de-
stroy it entirely. It would be worthwhile to examine materials
with other values of spin (and preferably free from quenched
disorder) and to explore the low-energy behavior.

Note: Shortly after we posted the present work on the arXiv,
another preprint by Bai et al. [44] appeared there, which
presents a closely related study with similar conclusions on
the S = 3/2 spinel compound MgCr2O4.
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