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Pyrochlore systems (A3B2O7) with A-site rare-earth local moments and B-site 5d conduction
electrons offer excellent material platforms for the discovery of exotic quantum many-body ground
states. Notable examples include U(1) quantum spin liquid (QSL) of the local moments and semi-
metallic non-Fermi liquid of the conduction electrons. Here we investigate emergent quantum phases
and their transitions driven by the Kondo-lattice coupling between such highly-entangled quantum
ground states. Using the renormalization group method, it is shown that weak Kondo-lattice cou-
pling is irrelevant, leading to a fractionalized semimetal phase with decoupled local moments and
conduction electrons. Upon increasing the Kondo-lattice coupling, this phase is unstable to the for-
mation of broken symmetry states. Particularly important is the opposing influence of the Kondo-
lattice coupling and long-range Coulomb interaction. The former prefers to break the particle-hole
symmetry while the latter tends to restore it. The characteristic competition leads to possibly mul-
tiple phase transitions, first from a fractionalized semimetal phase to a fractionalized Fermi surface
state with particle-hole pockets, followed by the second transition to a fractionalized ferromagnetic
state. Multi-scale quantum critical behaviors appear at non-zero temperatures and with external
magnetic field near such quantum phase transitions. We discuss the implication of these results to

the experiments on PralraO7.

Introduction : Recent advances in correlated electron
systems reveal emergent phenomena beyond the Landau
paradigm. Localized magnetic moments may host quan-
tum spin liquid phases characterized by fluctuating gauge
fields and fractionalized particles [1-3]. Itinerant elec-
tron systems may show non-Fermi liquid behavior with-
out quasi-particles [4, 5]. Such phenomena and associ-
ated quantum phase transitions demand development of
new concepts and novel understandings in strongly inter-
acting quantum many body systems [6—8].

In this work, we study the intertwined model of two
emergent phases beyond the Landau paradigm. We con-
sider the interaction between the local moment system
supporting a U(1) quantum spin liquid and a non-Fermi
liquid semimetallic state of conduction electrons. This
model is partly motivated by physics of the pyrochlore
materials, A;B2O7, where the A- and B-site pyrochlore
lattices are occupied by rare-earth local moments and
5d conduction electrons, respectively. The A-site local
moments may form a quantum spin liquid with emer-
gent photons, a.k.a quantum spin ice, as suggested in
YbQTiQO7, PI‘QHfQO7, and PI‘QZI‘207 [()717] When the
B-site is occupied by conduction electrons in 5d orbitals,
such as Jeg=1/2 Kramers doublet of Ir ions, the sys-
tem supports a non-Fermi liquid semimetal, so-called
Luttinger- Abrikosov-Beneslaevski (LAB) state, which is
derived from the quadratic band-touching with long-
range Coulomb interaction [18-21]. The quadratic band-
touching of Ir conduction electrons is confirmed in the
ARPES experiment in the finite-temperature paramag-
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FIG. 1. Schematic phase diagram. The coupling constant
g characterizes strength of the Kondo-lattice coupling. The
particle-hole symmetry is broken at g.1 and the time-reversal
is broken at g.2. Insets show energy dispersions of the con-
ducting electrons. Systems at the blue dashed line may show
multi-critical behaviors with a non-zero magnetic moment at
low temperatures.

netic state of ProlraO; and NdoIroO7 [22, 23], It is
believed that the interplay between the two emergent
phases mentioned above may play a crucial role in low
temperature physics of PralroOr [24-27] .

Considering the Kondo-lattice coupling between the lo-
calized moments and conduction electrons, we first con-
struct a low energy effective field theory for the cou-
pled system of the U(1) QSL and the non-Fermi lig-
uid semimetal state. We use the renormalization group



method to investigate emergent phases and phase tran-
sitions and find that the Kondo-lattice coupling and the
long-range Coulomb interaction shows intriguing inter-
play physics. Namely, the former shows the tendency
of breaking the particle-hole symmetry but the latter
plays the opposite role. For small Kondo-lattice cou-
pling, the Coulomb interaction prevails, and the two
underlying phases remain weakly coupled. This is the
Luttinger semimetal coexisting with fractionalized exci-
tations and emergent photons from the local moments.
For sufficiently strong interaction, either time-reversal
or inversion symmetry may be broken and our pertur-
bative renormalization group analysis shows that time-
reversal symmetry breaking is the most relevant chan-
nel. Our analysis suggests that the particle-hole sym-
metry breaking occurs first as the Kondo-lattice cou-
pling becomes dominant over the long-range Coulomb
interaction, leading to a fractionalized Fermi surface
state with emergent particle-hole pockets. This is fol-
lowed by the time-reversal symmetry breaking transition
to a ferromagnetically-ordered fractionalized semimetal
phase. We discuss the resulting multi-scaling critical be-
havior in light of some key experiments in the low tem-
perature phase of PryIr,O7.

Model : We start with a generic model Hamiltonian
for the pyrochlore system, AsB5O7,

Hiot =Ha+Hp+ Ha_p

Hy= Z Juw (u, v)S* (w)S¥ (v)

(v,u)
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The Hamiltonian for A sites (Ha) describes localized
magnetic moments (S*), and the Hamiltonian for B sites
(Hp) describes conduction electrons with annihilation
and creation operators (fe, fg) Greek indices (v, 8) are
for spin quantum numbers, and (u,v) and (4,5) are in-
dices for A and B sites, respectively. The Kondo-lattice
coupling is described by H4_pg. A generic hopping term
(tfjﬁ ), generic exchange interaction (J,,(u,v)), and in-
teraction function (R, (u,1), s,5) are introduced, which
are constrained by lattice symmetry. The long-range
Coulomb interaction with electric charge e is also intro-
duced. The local spin operators may be represented in
terms of either global or local axes, S(u) = S%(u)éq(u) =
SH(u)Z,. The basis vectors of the local axes (é,(u)) are
commonly used in spin-ice literatures [28-32], and it is
straightforward to find the relations with the basis vec-
tors of the global axes (&,,).

We focus on the system where spins at A sites host
a U(1) QSL and electrons at B sites form the Luttinger
semi-metal, motivated by the ARPES experiments [22].

The low energy effective Hamiltonian of H4 may be
written as the quantum spin ice Hamiltonian, Hy —
%, 35 (B) + 3, $(6(07))? [25-30). The “star” in-
dex, v*, represents the dual diamond lattice sites of the
underlying A-site pyrochlore lattice. The emergent mag-
netic field B (v) is proportional to the average of the local
spin projections to easy-axis ([111] or equivalent) direc-
tions, and the emergent electric field (£(v*)) describes
spin fluctuations out of local easy-axis directions. We
stress that the quantum spin ice manifold is defined by
the divergence-free condition, V - B= 0, and thus the B
fluctuations are all transversal.

The Luttinger semi-metal Hamlltonlan can be approx-
imated as Hp(e = 0) — Zk\I/ Ho(K)¥, with a four
component spinor Wy,

Co-’ C1 Zd

At low energy, the functions d,, (k) may be written as

dy (K) = V3kyk.

dy(k) = (k2 — ki) , ds(k) = 3 (ka -kl - ]%2,) .
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The term with ¢y breaks the particle-hole symmetry
(PHS), and the terms with ¢y, co are associated with the
tag and ey representations, respectively, of the cubic sym-
metry. We emphasize that the charge-neutrality of the
system would demand the particle-hole band condition
lco| < |eil, |ez| if there are no other electron-hole pockets
far away from the zone center[22]. We also set m = 1/2
for simplicity unless otherwise stated. Note that the pres-
ence of the long-range Coulomb interaction makes the
particle-hole and SO(3) rotational symmetries emergent
in the LAB phase (¢p — 0 and ¢1 — ¢2)[21].

The two sectors (A,B) host the excitations with fun-
damentally different dynamics. Namely, low energy ex-
citations of the A-sites are emergent photons whose dis-
persion relation is wy(§) = vx|g] with two polarizations
A and their velocities vy. On the other hand, the B-sites
have electronic excitations with the long-range Coulomb
interaction €(k) ~ |k|* with z ~ 2.

We first construct a low energy effective coupling term
of the Kondo-lattice coupling. Employing the lattice
symmetries and gauge invariance, the lowest order cou-
pling terms may be written as

Hy_p— g/ ByUT MW, M; = cos()s; + sin(a)(s;)>.

The two coupling constants (g and «) characterize the
Kondo-lattice coupling. The specific form of the cou-
pling matrix M is completely determined by the cubic
and time-reversal symmetries. The 4x4 matrix (s;) of
a spin operator S; = Uls, ¥ is used with the explicit
form being introduced in SI [36]. We mainly focus on



the coupling to B because £ couples to conduction elec-
trons through a polarization type coupling Mg=Vora
Rashba type coupling Mp = V x §, which is less relevant
than the coupling to B (see SI [30]).

The effective low energy action of the total Hamilto-
nian in the Euclidean spacetime is

Stot =Sa+Sp+Sa-n

2 )
Sa = / BF b +O((ViB;))?, (Vi&;)?, &, B))
. T 2#0 2
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Sp :/ U (0, + Ho(—iV) U + %/
x, T xT,Y,

)

Sa_p = 9/ B,V ML,

with the density operator, n(z,7) = Ui(z, 7)¥(x,7).
Though the form of the Yukawa coupling with g may
look similar to the ones in previous literatures [33-35],
we emphasize that the U(1) gauge structure in the spin-
ice manifold plays a crucially different role here.

With a non-zero small coupling (g # 0), the dynamics
of the B fields is modified as

dij Bi(—=a)B;(q) 8% Bi(—q)B;(q)

[ BEgB@ [ (B sy BB,
1o 2 Ho 2

Hereafter, we use the four-vector notation for momentum

and frequency, k = (E, kn). The boson self-energy at one-
loop order is

Sid(g) = ¢ /k (MG + QMG (R) - ()

with the Fermion Green’s function, G}(k) = (—ik, +
Ho(k))~!. Introducing an ultraviolet (UV) cut-off A, we
; L2

find £ (¢ = 0) = —" % for the most symmetric condi-

tion (c1 =c2 =1, ¢cg =0, and @ = 0), which corresponds
2A

to - — uo(l— bed,

gauge fluctuations is

). The fermion self-energy from the

(k) = —g? / NI Gk + g) M (Bi(—a)B; (+9)). (2)

Unless 1/up = 0, we find the fermion self-energy,

2
1)
S¢(k) = uogZA(acOf + ﬂ Z dn - (3)

with non-zero values of dcg, dc1. For the most symmetric
condition, we find dcg = 0.025, dc; = —0.013. The two
self-energies are UV divergent under the Kondo-lattice
coupling. The absence of logarithmic dependence on the
UV cutoff means the bosonic and fermionic excitations
remain weakly coupled, and the decoupled ground state
(g = 0) is stable as far as the Kondo-lattice coupling
is small. We call this state the fractionalized Luttinger
semi-metal (fLSM).

n(x, 7)n(y, )

We stress that the Kondo-lattice coupling generates
the PHS breaking term as manifested by dcy # 0 even
with the most symmetric bare Hamiltonian (¢o = 0).
This contribution arises from the transversal gauge fluc-
tuations, and the absence of the longitudinal gauge
fluctuations is essential. The competition between the
Kondo-lattice coupling and the long-range Coulomb in-
teraction plays an important role in the PHS channel
of fLSM. In the perturbative regime pog?A < 1, the
long-range Coulomb interaction is more relevant than the
Kondo-lattice coupling [21], and the PHS is realized.

Adjacent phases of f{LSM may be obtained by using the
lattice symmetries. Considering time-reversal symmetry
and parity as well as the rotational symmetries, a ground
state with (B;) # 0 breaks time-reversal symmetry and
rotations but not parity. The resulting time-reversal bro-
ken phase hosts nodal conduction electrons in the form of
Weyl semi-metals or metals. We call such a semi-metal
phase with broken time-reversal symmetry a fractional-
ized ferromagnetic semi-metal (fFM-SM). The presence
of both gapless electronic and gauge excitations is one of
the main characteristics of fEM-SM, different from other
states such as the Coulombic ferromagnetic state [31].
Similarly, a state with (&;) # 0 and (BB;) = 0 is naturally
dubbed a fractionalized ferroelectric phase, and one with
(&), (B;) # 0 may be called a fractionalized multiferroic
phase. As shown below, however, there may exist another
transition before the system reaches the fFM-SM.

Quantum Phase Transitions : To investigate transi-
tions to symmetry-broken phases, we first extend and
apply Landau’s mean field analysis, which amounts to
ignoring spatial and temporal fluctuations of the emer-
gent fields via B;(z,7) — B;. Integrating out the fermion
excitations, we obtain the effective action of B;, and a
continuous quantum phase transition between fLSM and
fFM-SM is obtained for g > g, (similar to the one of
[34], and also see SI [36]). At the one-loop level, we
find g. = /272/(puoA) for the most symmetric condi-
tion. The continuous transition obtained in the mean-
field calculation respects the PHS and SO(3) rotational
symmetry because fLSM enjoys those symmetries.

We, however, show that the gauge fluctuations desta-
bilize the continuous transition of the mean-field calcu-
lation. Defining 6% (¢) = X} (q) — £ (0), we find that
the boson self-energy has the form,

i

o (arldl+ auv/Taal )67 = 250,

The condition V-B = 0 enforces that the fluctuations are
transversal, and the dimensionless functions (ar, a,,) are
positive in a wide range of the parameters which are illus-
trated in SI. Their positiveness indicates that the gauge
fluctuations are stable with the renormalized propagator
(SH@)

Let us assume that there is a stable continuous tran-

554 (g) =



sition between fLSM and fFM-SM. At the critical point
(9 = gc), the dominant boson propagator may be written
as

(Bi(~q)B;(+q)) = — ! (67— §'d) (4)

92 aT|q) + au\/Ia]
omitting higher order terms. To control calculations bet-
ter, one may introduce the flavor number of fermions
(Ny) and perform 1/N; calculations (see SI [36]). The
PHS breaking term can be obtained by evaluating

OT[S; (W] [ 0 Te[GY(k+ @) (NN — NGV )]
k2 g OF? a|q] + aw/lan|

The integral is logarithmically divergent,

AQ(M) = 4. (5)
oA Ok2

Including both the gauge-fluctuations and the long-range
Coulomb interaction, we find dy # 0 (dp = 0.3601 for the
most symmetric condition), which can be interpreted as a
divergent dcg. The logarithmic divergence demonstrates
the PHS cannot be realized at the critical point, which
indicates the Kondo-lattice coupling dominates the long-
range Coulomb interaction near the critical point. Thus,
there is no continuous quantum phase transition between
fLSM and fFM-SM.

The divergence of the PHS breaking term destabilizes
not only the validity of the mean-field calculation but
also the particle-hole band condition (|co| < |e1],|e2])-
We find that the corrections of ¢; o are smaller than the
one of ¢y, and thus the particle-hole symmetry condition
may break down at long wave-length and low energy. The
charge neutrality condition then enforces the formation of
electron and hole pockets near the Brillouin zone center.

We propose, based on the above calculations, that the
PHS is broken before the onset of (B;), whose validity
is self-consistently checked a posteriori. The transition
between fLLSM and fFM-SM is intervened by an interme-
diate phase with the electron and hole pockets dubbed
the fractionalized Luttinger metal (fLM). There must be
more than one continuous transition between fLSM and
fFM-SM as illustrated in Fig. 1. The transition between
fLSM and fLM is likely to be described by the Lifshitz
transition. Once the pockets appear, the scale (ep # 0)
associated with the size of the Fermi pockets is emer-
gent. The long-range Coulomb interaction is screened by
the Thomas-Fermi screening, and the Yukawa coupling
induces the Landau damping term similar to the one of
the Hertz-Millis theory. Thus, in spite of the presence of
the gauge structure, the critical theory becomes

n U 7
SH=/W+vﬁi+mm&mW+1/)wM—hm&.
q T, T

|l

The term with v = v(ep) is for the Landau-damping,

4

and the coefficient of the term with |§]? is normalized to
be one. We omit the term with £? because it is irrelevant
at the critical point (say, r = 0). Namely, the dynamics
of the gauge fluctuations are determined by the damping
term, and the critical modes have the dynamical critical
exponent zg = 3. Since d + zg > 4, the term (B;)* with
u is irrelevant, and the gauge fluctuations are weakly
correlated with z; = 3. The operator scaling dimensions
are [Bi(z,7)] =2, [r] =2, and [hl,,] = v} = 4.

Multi-scale Quantum Criticality : The interplay be-
tween the Kondo-lattice coupling and the long-range
Coulomb interaction naturally brings about multi-scale
quantum criticality around the onset of (B;). To see this,
let us estimate the energy scale for breaking the particle-
hole band condition by using Eqn. (5). Setting A% =
%, the renormalization group equation is %co ~ (.3601,
and the assumption ¢y < ¢; becomes invalid at [* ~ 3.
The associated energy scale is Erp ~ A%2e™2" ~ A2/400
with the UV cutoff scale, A, below which the assumption
of small ¢y breaks down. The energy scale E;gr is much
smaller than the band-width of the conduction electron,
which is of the order ~ A2. It is natural to expect that the
emergent particle-hole pocket-size scale (er) in the inter-
mediate phase between fLLSM and fFM-SM is of similar
order of magnitude, namely Fir ~ €p.

Because of the hierarchy of energy scales, three sets
of critical exponents would naturally appear in physical
quantities near the onset of (B;). For example, the emer-
gent photons have z; = 1, the non-Fermi liquid excita-
tions have z9 ~ 2, and the Hertz-Millis fluctuations have
z3 = 3. The scaling dimensions of the external magnetic
field are easily obtained by considering the coupling to
the magnetic field. The emergent magnetic field couples
to the Zeeman external magnetic field via fw,r B 'ﬁemt, and

the scaling dimension of the external field is ue_xi’l = 2.
The conduction electron couples to the external field as

LM i My - Rext, Which gives 1/;;%572 ~ 2. We also show
that the Hertz-Millis type fluctuation gives v} 3 =4

ext,

Three different scaling behaviors can naturally arise
in all physical quantities. For example, the magnetic
Gruneissen parameter, 'y = —(OM/OT)y/cy with
magnetization (M) and specific heat (cy) at constant
external magnetic field H, has the scaling form,

1 Tl/(zlyemt,l) Tl/(z2’/ezt,2) Tl/(ZSVezt,S) T

FH =T ’ ) ) .
heact hext hext hea:t EIR

The dimensionless function, JF, manifests the multi-scale
quantum criticality. For example, when T > E;p, one
can find F(z,y,2;0) = by + bz + bay + b3z with three
coefficients bg 12,3 for x,y,z < 1.

Possible exponents are z1Vez,1 = 1/2 for the emer-
gent photons and z9Veyt 2 = 1+ O(1/Ny) for conduction
electrons in fLSM. Most importantly, near the quantum
phase transition to the fractionalized ferromagnetic semi-
metal state, the Hertz-Millis QCP gives the scaling expo-



nent, z3Veyt,3 = 3/4. It is interesting to note that similar
multi-scaling critical behavior in magnetic Gruneisen pa-
rameter is seen in PrylryO7 [27]. Our theory naturally
explains the appearance of Fermi-pockets at low tem-
peratures with multi-scaling behaviors even though the
calculated critical exponents are not exactly the same as
the experimentally-determined value.

We also remark that our theory allows two channels,
semi-metallic conduction electrons and collective modes
of the U(1) QSL, to contribute to magnetic susceptibil-
ity and other thermodynamic quantities. An interesting
question is whether the contributions of such unusual ex-
citations to thermodynamic and transport properties can
explain various non-Fermi liquid behaviors seen in the ex-
periment on PrylraO7. We leave this intriguing problem
for a future work.

In conclusion, we investigate emergent quantum phe-
nomena arising from the Kondo-lattice coupling between
the quantum spin liquid of local moments and non-
Fermi liquid conduction electrons in pyrochlore systems
A5B507. Intertwined actions between the Kondo-lattice
coupling and the long-range Coulomb interaction are un-
covered. As an important result, quantum criticality
near the onset of ferromagnetic ordering naturally dis-
plays multi-scaling behaviors. Further works on more
quantitative analysis and comparison with experiments
are highly desired.
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