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An insulator differs from a metal because of a different organization of the electrons in their ground
state. In recent years this feature has been probed by means of a geometrical property: the quantum
metric tensor, which addresses the system as a whole, and is therefore limited to macroscopically
homogenous samples. Here we show that an analogous approach leads to a localization marker, which
can detect the metallic vs. insulating character of a given sample region using as sole ingredient
the ground state electron distribution, even in the Anderson case (where the spectrum is gapless).
When applied to an insulator with nonzero Chern invariant, our marker is capable of discriminating
the insulating nature of the bulk from the conducting nature of the boundary. Simulations (both
model-Hamiltonian and first-principle) on several test cases validate our theory.

The difference between an insulating material and a
conducting one is commonly attributed either to spec-
tral properties of the system or to localization properties
of the electronic states at the Fermi level (in a mean-
field framework). A paradigm change occurred in 1964,
when W. Kohn defined the insulating state making nei-
ther reference to electronic excitations nor to Fermi-level
properties [1, 2]: the qualitative difference between insu-
lators and conductors manifests itself also in a different
organization of the electrons in their many-body ground
state. A series of more recent papers [3–6] has established
Kohn’s pioneering viewpoint on a sound formal and com-
putational basis, rooted in geometrical concepts. These
developments followed (and were inspired by) the mod-
ern theory of polarization, based on a Berry phase [7].
The theory—as developed so far—addresses only macro-
scopically homogeneous systems: either crystalline corre-
lated systems [3, 8–11], or independent-electron systems.
In the latter case spectral properties alone cannot qual-
itatively discriminate Anderson insulators from metals
(both are in fact gapless at the Fermi level), while the
geometrical theory is very effective for the task [12, 13].

In this work we limit ourselves to noninteracting elec-
trons, where for inhomogeneous cases (e.g. in heterojunc-
tions) the metallic/insulating character of a given region
is usually probed via the local density of states (LDOS).
Here we show—by performing simulations over many test
cases—that the metallic/insulating character of the elec-
tronic ground state can be probed locally, even in the
Anderson-insulating case, where the LDOS is of no avail.

The modern formulation of Kohn’s theory is based on
the quantum metric tensor [14]: it is an extensive quan-
tity having the dimensions of a squared length. We ad-
dress here the metric tensor per unit volume (area in 2d,
length in 1d); for a macroscopically homogeneous sample
we indicate this intensive quantity as Lαβ (Greek sub-
scripts are Cartesian coordinates throughout). In the

noninteracting-electron framework all properties of the
many-electron ground state are embedded in the ground
state projector; for the sake of simplicity, we give the for-
mulation for “spinless electrons”. For a bounded sample
with square-integrable orbitals the projector is

P =
∑
εj≤µ

|ϕj〉〈ϕj |, (1)

where µ is the Fermi level, |ϕj〉 are the single-particle or-
bitals, and εj the corresponding energies. The quantum
metric tensor has the transparent meaning of the second
cumulant moment of the position operator, or equiva-
lently of the ground-state fluctuation of the dipole [4–6]:

Lαβ =
1

V
( 〈rαrβ〉 − 〈rα〉〈rβ〉 )

= − 1

V

∫
dr 〈r| P [rα,P] [rβ ,P] |r〉. (2)

In the large-sample limit Lαβ is finite in all insulators,
and diverges in all metals; simulations and heuristic ar-
guments altogether suggest that for metallic samples the
divergence is of the order of the linear dimension of the
sample [12, 15]. If the bounded sample is a crystallite, the
integrand in the second line of Eq. (2) is lattice-periodical
in the bulk region of the sample.

Given that the second line of Eq. (2) is (minus) the
trace of the operator P [rα,P] [rβ ,P], divided by the sam-
ple volume, we address here the issue of whether the
insulating/metallic organization of the electrons in the
ground state (in Kohn’s words) can be probed by evalu-
ating the trace per unit volume locally i.e. by integrating
the local function

Fαβ(r) = −〈r| P [rα,P] [rβ ,P] |r〉 (3)

over a small region in the bulk of the sample. For a
homogeneous bounded crystallite we therefore are going
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to replace Lαβ , Eq. (2), with its local counterpart, i.e.

L̃αβ =
1

Vcell

∫
cell

dr Fαβ(r), (4)

where the cell is chosen at the crystallite center. An
analogous approach is adopted for either the disordered
cases (where the central cell is replaced by a larger region)
and for inhomogeneous cases (where the cell is chosen in
the appropriate region). The main object of the present
work is the real symmetric part of L̃αβ , which we are
going to name localization marker.

We start with 1d bounded chains, by adopting a tight-
binding nearest-neighbor Hamiltonian. In the crystalline
two-band case the chain is either insulating or metal-
lic according to whether the Fermi level lies in the gap
or across a band; in the disordered case the spectrum
is gapless but the chain is always Anderson-insulating
[16]. We adopt the same Hamiltonian as in Ref. [12],
where the metric tensor L = Lxx, Eq. (2), has been ad-
dressed; as shown therein, L diverges in metallic chains
while it converges—to very different values—in the band-
insulating and Anderson-insulating cases.

We have performed simulations over 1d “heterojunc-
tions” of up to 6,000 sites, made of two homogenous
half-chains, in all the possible combinations of metal,
band insulator, and Anderson insulator; the most sig-
nificant results are displayed in Fig. 1 [17]. The top
panel shows the LDOS (crystalline vs. disordered), very
similar to the global density of states published in Ref.
[12] (gapped vs. gapless). This LDOS implies that by
setting µ = 0 the left and right half-chains are band-
insulating and Anderson-insulating, respectively, while
by setting µ = −1 the left and right half-chains are metal-
lic and Anderson-insulating, respectively. In both cases
the LDOS cannnot discriminate correctly, while L̃ accom-
plishes the task; the metric tensor L, also shown, yields
a kind of average over the whole chain.

Next we switch to 2d simulations with model tight-
binding Hamiltonians on a honeycomb lattice with two
sites per primitive cell [17]; a typical flake is displayed
in Fig. 2. The electronic structure is described by the
orthonormal basis set |χR`

〉, where R` is a site index.
The ground-state projector, Eq. (2), assumes then the
general form

P =
∑

R`Rm

P (R`,Rm) |χR`
〉〈χRm

|. (5)

We start with the validation of our local theory in the
simplest cases, where the trace per unit volume of Eq. (3)
clearly discriminates the metallic vs. insulating regions
and provides indeed the same message as the LDOS. We
stress once more the conceptual difference: the former
approach probes the ground state, while the latter probes
the spectrum.
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FIG. 1. (color online). Results for 1d heterojunctions. Top
panel: LDOS for a chain which is crystalline in the left half,
and disordered in the right half. Middle panel: L̃ marker for
a µ = 0 chain (band-insulating in the left half, and Anderson-

insulating in the right half). Botton panel: L̃ marker for
a µ = −1 chain (metallic in the left half, and Anderson-
insulating in the right half).

Some results are provided in detail in the Supplemental
Material [17]; here we only discuss the insulating (half-
filling) homogeneous case: Fig. 3 shows the Cartesian
trace of Lαβ , of L̃αβ , and of an analogous “bulk” quan-
tity where the integral in Eq. (4) is evaluated over N/4
sites (see Fig. 2), as a function of the flake size. It is
remarkable that the total trace, Eq. (2), converges to the
asymptotic quantum metric quite slowly, only like the
inverse linear size of the system; the localization marker
L̃αβ converges instead exponentially. In the crystalline

metallic case L̃αβ diverges like the linear size of the flake
(Supplemental Fig. 1 [17]). We have also verified that
our marker can probe the metallic vs. insulating charac-
ter of the different regions of an inhomogenous sample,
by addressing a flake cut through the center by a vertical
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FIG. 2. (color online). A typical flake (2d crystallite). We
have considered flakes with up to 8190 sites, all with the same
aspect ratio; the one shown here has 1806 sites. The localiza-
tion marker L̃αβ is evaluated either on the central cell (two
sites) or by means of analogous integrals on the “bulk” region
(1/4 of the sites).
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FIG. 3. (color online). Half-filling homogenous crystalline
flake. Cartesian trace of the localization tensor Lαβ , Eq. (2)

(labeled “Flake”), of our localization marker L̃αβ (labeled
“Cell”), and an analogous formula evaluated over the “bulk
region” (labeled “Bulk”), as a function of the flake size.

interface [17].

We also address test cases where time-reversal invari-
ance is absent and the insulator is topological, having
nonzero Chern invariant: we will show that our marker
clearly highlights the insulating character of the bulk and
the conducting character of the boundary. To this aim
we adopt the Haldane Hamiltonian [18], for both a crys-
talline and a disordered flake [17] in the topological in-
sulating regime. It is well known that the flake is insu-
lating in its bulk, while there are topologically protected
metallic states at the boundary: it is therefore worth
investigating how the different versions of the marker—
Cartesian traces of Lαβ and L̃αβ—actually behave.

The relevant quantities are plotted in Fig. 4. The bot-
tom panel shows that the trace of L̃αβ diverges like the
linear dimension L of the flake when the cell in Eq. (4)
is chosen at the flake boundary (the average over the
boundary cells is shown): the boundary is in fact metal-
lic. The top panel shows that the trace of L̃αβ converges
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FIG. 4. (color online). Top panel: Cartesian trace of Lαβ
and of L̃αβ for a flake cut from a crystalline topological insu-
lator with nonzero Chern number, as a function of the flake
size. Labels as in the previous figures. Bottom panel: Carte-
sian trace of the localization marker L̃αβ , averaged over the
boundary cells.

fast when the cell is instead chosen in the bulk, and con-
firms that the bulk is insulating.

The top panel of Fig. 4 also shows that the trace of
Lαβ (labelled “Flake”) converges too, although to a large
value. The rationale for the latter feature is that each
boundary cell contributes to the integral in Eq. (2) a
term proportional to L, while the number of boundary
cells is also proportional to L. The contribution to the
total trace is therefore extensive: the trace per unit area
is therefore finite (not divergent).

In the topological case, the insulating behavior is ex-
tremely robust with respect to perturbations; here we
address the case of strong on-site disorder [17]. By com-
paring Fig. 4 to Fig. 5 it is easily realized that the
strong on-site disorder introduces some fluctuations, but
does not change at all the key message.

Finally, we are going to present 3d first-principle sim-
ulations, not performed on bounded crystallites; instead,
we address a superlattice made of slabs of A and B ma-
terials, within periodic boundary conditions (PBCs). To
this aim, we rewrite the second line of Eq. (2) as [5, 6]

Lαβ =
1

V

∫
dr dr′ (r− r′)α(r− r′)β |〈r| P |r′〉|2, (6)

which allows switching to an unbounded sample within
PBCs.

If the stacking axis is x, and A and B are both crys-
talline materials, then Eq. (6) leads to a localization
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FIG. 5. (color online). Same as in Fig. 4 for a topological
flake with strong on-site disorder [17].

marker of the form

L̃yy =
1

Vcell

∫
Vcell

dr

∫
dr′ (y − y′)2|〈r| P |r′〉|2, (7)

where the cell is chosen in the middle of either the A or
B regions; the insulating/metallic nature of the slab is
then detected by the convergence/divergence of L̃yy. We
have validated Eq. (7) by means of PBCs tight-binding
simulations, which provided results equivalent to those
for a bounded flake (Supplemental Fig. 3 [17]).

Unfortunately, a first-principle implementation of
Eq. (7) as it stands is computationally prohibitive. We
therefore need a simplified tool, capable of detecting only
whether L̃yy diverges or converges, without providing
its precise value in the insulating cases. We adopt the
so-called Wannier-interpolation scheme [19], which ac-
curately maps the Kohn-Sham Hamiltonian on a tight-
binding-like one, capable of describing both insulating
and metallic systems. Here we label the basis set as
|χR`
〉, where R` is the orbital center:

R` = 〈χR`
| r |χR`

〉. (8)

With these notations, the projected P is identical in form
to Eq. (5), where

P (0`,Rm) = 〈χ0`
| P |χRm

〉, (9)

and the matrix elements are evaluated using a discrete
k-point mesh.

If the two basis centers 0` and Rm are both in the
middle of a given slab, and distant between themselves

FIG. 6. (color online) Localization marker Lyy and LDOS
at the Fermi level (dashed black line) for a 43-atom AlGaAs
heterostructure [20]. Al atoms are in grey, As in purple and
Ga in orange. Lyy is computed using an increasing set of k
points and R vectors along the ŷ axis (orthogonal to the Al-
GaAs axis). In the bulk insulating GaAs region the marker
converges very fast to a finite number, due to the exponen-
tial decay of the density-matrix, while in the bulk Al it di-
verges linearly with the number of k points. All quantities are
plotted as double macroscopic averages, defined as in Refs.
[21, 22].

in the y (transverse) direction, the qualitative asymptotic
behavior of 〈r| P |r′〉 is reflected into the behavior of the
matrix elements in the |Rm − 0`| → ∞ limit. There are
several different ways of numerically inspecting asymp-
totic behaviors. Here—inspired by the tight-binding ver-
sion of Eq. (7)—we choose to evaluate the convergence-
divergence of the sum

Lyy =
1

Vcell

∑
0`

∑
Rm

(0`y −Rmy)2|P (0`,Rm)|2. (10)

We stress that the numerical value of Lyy, Eq. (10), is

different from the one of L̃yy, Eq. (7); the key point is
that the terms in the summation become asymptotically
exact when the basis centers are far apart.

Our case study is a periodically repeated (001) super-
cell of GaAs and Al lattice-matched slabs, with double
As termination [20]. In this geometry the metal and
the semiconductor cubic axes are rotated by 45o around
(001), and the lattice-matching condition sets the ratio
of the two cubic lattice constants equal to 1/

√
2. Our

supercell contains 9 Al layers, 12 Ga layers, and 13 As
layers, for a total of 43 atoms (there are two Al atoms
per layer).

We show in Fig. 6, dashed line, the LDOS at the Fermi
level, filtered with a double macroscopic average [21, 22].
As it must be, the LDOS is finite in the metallic region
and goes to zero in the insulating region: the exponential
tail owes to evanescent gap states. The novelty of the
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present work is to show, according to Kohn’s viewpoint,
that the metallic vs. insulating regions are characterized
by a different organization of the electrons in the many-
body ground state, without any reference to eigenvalues
or spectral properties.

In the GaAs region all the solid lines in Fig. 6 con-
verge fast to the same value. We remind that our sim-
plified marker Lyy does not provide the same numerical

value as the exact localization marker L̃yy; the finiteness
of Lyy proves nonetheless the insulating nature of the
ground state electron distribution in the GaAs region.
In the Al region, instead, the different solid lines show
the divergence of Lyy—ergo of L̃yy as well—linear with
the number of k points.

In conclusion, we have shown that the insulating na-
ture of the ground electron distribution can be probed lo-
cally, by means of a marker explicitly expressed in terms
of the ground state and nothing else, in particular avoid-
ing any reference to either spectral properties or to lo-
calization properties of the electronic states at the Fermi
level. Besides the case of band insulators (model and
first-principle), our test cases include Anderson insula-
tors (where the spectral properties are of no avail) and
topological insulators (where the bulk is insulating and
the boundary is conducting). The simulations presented
here address solely independent electrons; nonetheless we
argue that our local theory of the insulating state can be
extended to correlated electrons as well [30]. Our work
paves the way for a unified complete theory of the in-
sulating state, including in principle all kinds of insula-
tors, both homogeneous and heterogeneous (crystallites,
heterojunctions, nanostructures), through a localization
marker based on the ground-state electronic distribution
only.
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