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Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses
simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful prop-
erties. Here we propose and analyze a scheme that takes advantage of the interplay between spin-orbit coupling
and superexchange interactions, in the presence of a coherent drive, to deterministically generate macroscopic
arrays of cluster states in fermionic alkaline earth atoms trapped in three dimensional (3D) optical lattices. The
scheme dynamically generates cluster states without the need of engineered transport, and is robust in the pres-
ence of holes, a typical imperfection in cold atom Mott insulators. The protocol is of particular relevance for
the new generation of 3D optical lattice clocks with coherence times > 10 s, two orders of magnitude larger
than the cluster state generation time. We propose the use of collective measurements and time-reversal of the
Hamiltonian to benchmark the underlying Ising model dynamics and the generated many-body correlations.

Entanglement, the characteristic trait of quantum mechan-
ics, is a vital resource for quantum information processing [[1]],
quantum communications [2] and enhanced metrology [3].
These applications often require multipartite entangled states,
which can be difficult to create and intrinsically fragile to
noise and decoherence. Nevertheless, there exists a spe-
cial class of multipartite entangled states called cluster states,
which can be robust to adverse effects on a subset of their log-
ical qubits [4H6]. This intrinsic robustness, and the state en-
tanglement properties, make cluster states in two (or three) di-
mensions a resource for one-way quantum computing, where
a computation is realized by a sequence of single-qubit mea-
surements on the initial cluster state. Besides their appeal in
quantum computation, cluster states have been a playground
for the study of many-body and statistical physics [6], graph
theory [7]], topological codes [8]], and mathematical logic [9].

Cluster state generation has been reported in proof-of-
principle experiments using frequency down-conversion tech-
niques [[10H12], photonic qubits [13}[14], continuous-variable
modes of squeezed light [15) [16], semiconductor quantum
dots [17] and trapped ions [18]]. In addition, coherent
entangling-disentangling evolution via controlled collisions
was reported in cold atom Mott insulators [19]], an experiment
that stimulated theoretical work towards cluster state gener-
ation [20H24]. However, a scalable, deterministic source of
cluster states needs yet to be realized.

Here we propose a scheme for preparing macroscopic clus-
ter state arrays (~ 102 qubits ) in one, two and three dimen-
sions. Our protocol uses a combination of superexchange and
spin-orbit coupling to engineer nearest-neighbor Ising interac-
tions. In this implementation cluster states naturally emerge
during time evolution without the need of controlled collisions
in spin dependent lattices [20], while maintaining robustness
to imperfect filling. While full tomography is not yet feasible
in macroscopic systems, we propose the use of many-body
echoes to probe the cluster state quality. While our protocol is
general and applicable to ultracold atomic systems interacting
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FIG. 1: (a) Schematic of Fermi-Hubbard dynamics in an optical
lattice, characterized by nearest-neighbour tunneling energy J, and

Energy

onsite repulsion U. A resonant laser with Rabi frequency Qe*c”

interrogates the internal levels while transferring momentum to the
atoms(SOC). (b) Superexchange mechanism. The lowest(highest)-
energy single-particle levels are in a staggered spin configuration due
to the SOC. One type of virtual tunneling is suppressed by an energy
cost U + €2, while another is near-resonant with cost U — €2 (for
U ~ ). Zero-energy states play no role due to Pauli exclusion
prohibiting tunneling.

via contact [25] or engineered interactions (e.g. via an opti-
cal cavity) [26] 27], it is particularly relevant for current 3D
atomic lattice clocks [28H30]] operated with fermionic alka-
line earth atoms (AE). These atoms offer untapped opportu-
nities for precision metrology [31]] and quantum information
[301 132} 33]], since they possess a unique atomic structure fea-
turing an ultra-narrow clock transition with > 100s lifetimes,
and a fully controllable, magnetic field insensitive hyperfine
manifold. The demonstrated capability to generate spin-orbit
coupling (SOC) in AEs [34138]], together with near-term ex-
perimentally accessible single-site addressability and control
of SOC via accordion lattices [39-H41]], may enable the first
realization of a large-scale one-way quantum computer in ul-
tracold atoms using our protocol.

Model. Consider N neutral fermionic atoms prepared in
two long-lived internal states, denoted by g, e (e.g. optical
clock states or hyperfine nuclear spin states), trapped in a deep
cubic optical lattice of L sites. We operate in the ultracold



regime where only the lowest Bloch band is populated. The
internal levels are continuously driven by a resonant laser (via
optical or Raman transitions) with wavevector Ec and Rabi
frequency Qe <™ at lattice position 7. The drive imprints a
site-dependent phase ¢; = EC -7j, which transfers momentum
to the atoms and generates spin-orbit coupling [34]. Here,
7; = (m, n,l)a, with a the lattice spacing and m, n, [ integers.
By going to a dressed basis o € {1, ]} defined by the rotated
states [1) = (le) — i]g))/v2 and |) = (le) + i]g))/V2.
(c.f. Supplementary A), the Hamiltonian is described by the
following Fermi-Hubbard model (A = 1):

H=—7J Z (C Ckg+hc)+UZ’flj¢ﬁj¢
J

(4;k),0

+5 Z '™ (fijy — fjy) .-
i

6]

Here, ¢, annihilates an atom of spin ¢ on site j, 7, =
é;géjg, and (j, k) indexes nearest-neighbours (no double-
counting). J is the hopping amplitude between sites, and U >
0 is the Hubbard repulsion [See Fig. a)]. We have assumed
that the phase between neighbouring sites is ¢; — ¢y, = m, cor-
responding to akc - & =  for every unit vector & € {#,7, 5}
along which tunneling is permitted, so that the sign of the Rabi
drive alternates between them. This corresponds to inducing
an effective gauge field with relative flux 7, if one visualizes
the spin as an additional synthetic dimension [42].

At half filling N = L, Q/J > land U/J > 1, a
Mott insulator is formed with suppression of doubly-occupied
sites. The strong drive favours staggered spin order, and
competes/cooperates with virtual second-order tunneling pro-
cesses (superexchange). Instead of typical antiferromagnetic
interactions [43] 144], SOC transforms the Hamiltonian into a
dominant nearest-neighbour Ising interaction. The underlying
mechanism is depicted in Fig. [T(b). If two neighbouring sites
are in the single-particle ground-state |/ 1), double occupancy
after a tunneling event will cost an energy penalty +2 due to
the alternating Rabi drive, and an additional penalty +U due
to Hubbard repulsion, creating a large energy gap 2 + U. If
the particles are instead in the excited state |1]), virtual tun-
neling costs —{2 + U which can be made near-resonant for
) ~ U. The states |11) and |]J) cannot tunnel due to Pauli
exclusion. The effective superexchange Hamiltonian for our

system (c.f. Supplementary B) becomes H, = H(l) + H(z)

with:
<Q+D 4770 )Z

2
where S’f are spin-1/2 operators, and D is the dimensionality
(i.e. D = 2 for 2D tunneling). There is an additional inter-
action A& = % R (S‘JJFS’IC+ + h.c.), but its contribution
to unitary evolution is rendered negligible in our parameter
regime by the SOC, which forces the states affected by PAL(E% )

to pick up a high-frequency phase ~ e~2** from the drive,

- 4J2U s A
1 z Qz
=g St
(3.k)

making their off-diagonal terms in the unitary proportional to
~ J?2/(QU) and thus negligible (c.f. Supplementary C). The
superexchange mapping is exact in the limit of U/J — oo,
and |2 — U|/J — oo to avoid higher-order processes (see
Supplementary D for benchmarking).

Cluster states. A cluster state | ) is a many-body quantum
resource state, characterized by localizeable entanglement. It
can be generated by applying a controlled phase gate on ev-
ery pair of neighbouring sites (j, k): exp[—i (stvz i SZ
132 7] [}, [}y where &), = (1), — I1),)/v2 [Sec
Fig. 2[a)]. Logic gates can be implemented by consecutlve
measurements on the cluster state, permitting a platform for
quantum computation that needs no entanglement generation
besides the initial state. A 2D cluster state is sufficient for uni-
versal computation [6], while a 3D state also has significant
fault-tolerance on the order of 25% error [45]. We propose to
use the Ising interaction in Eq. (Z) applied to an initial state
[t)(0)) = |+, 4, - ) to realize a cluster state. We bring
the drive close to resonance, {2 ~ U, making the SZ Sz 7, term
large enough to access cluster states on experimentally viable
timescales, as discussed in the last part of this Letter. The
single-particle terms in the Hamiltonian can be removed with
a spin-echo: We evolve to a halfway time, make a w-pulse
I = e=5" and evolve for the second half, undoing any on-

site rotations [See Fig. [2(b)]:
(1)), = e~ et/ 2lem et/ y(0)) e e~ Mt 15(0))
42U

HZZ:JZZZS;S27 JZZ:W'
(3,k)

3)
Evolving under the Ising interaction to the cluster time, . =
7/ J,, implements the controlled phase gates needed.

At half filling, the protocol prepares an almost perfect clus-
ter state (up to single-particle rotations) for appropriate pa-
rameters. Figs.[2c),(d) compare the protocol to the ideal Ising
model with fidelity and collective $* = > SI observables.

A cluster state |¢).) can be equivalently deﬁned as an eigen-
state of stabilizer operators [S)]. These are local multi-body
operators that quantify the localizeable entanglement in the
state,

(K); = 2227 (] S5 T Sk ¢) =1 for [¢h) = [ee) .

(4:k)

The closeness of these stabilizer expectation values, which we
call cluster correlations hereafter, to (K); = 1 in a given
region of the lattice is a metric of the cluster state quality
there [5]]. There is no significant distinction between (K); =
=+1, since the two can be interchanged with an e rotation, and
we take absolute values when all stabilizers are negative. In
Fig.[2Je), we show stabilizers for the superexchange model in
2D at half filling. This acts as a better metric than global state
fidelity, because the localized nature of cluster state entangle-
ment still permits computation using a region of the lattice if
some other, unconnected region is corrupted.

Imperfect Mott insulator. A major source of error in exper-
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(a) Cluster state schematic. Controlled phase gates are applied to nearest-neighbour pairs. The resulting correlations are local

stabilizer operators (here in 1D). (b) Protocol for generating cluster states. The system is evolved with a spin-echo to simulate an Ising
interaction. (c) Fidelity F' = [{3)(#)|1(t))2|* between an Ising Hamiltonian evolution and our protocol from Eq. (3), using the superexchange
model. Parameters are J/(27) = 28 Hz for U/J = 56, and J/(27) = 66 Hz for U/J = 18. System size is L = 4 x 4 with 2D tunneling. (d)
Time-evolution of <5' *) for our protocol (lines) and ideal Ising model (dots). Cluster times t. = 7 /.J,, are indicated in matching color. Note
that . is shorter for the red line because it has a higher J, and thus higher J,, ~ J 2. (e) 2D cluster correlations at half filling with L = 4 x 4,

U/J = 56,9/ = 66.
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FIG. 3: (a) Cluster correlations for an L = 10 system with 1D tun-
neling at half filling (Full), and with one vacancy initially on site
m = 1 (Doped). Orange plots are computed with Fermi-Hubbard.
The green plots quantify how we would have overestimated the cor-
relations if we had instead used an approximate spin-1 model (c.f.
Supplementary E). Parameters are J/(27) = 22 Hz, U/J = 115,
Q/J = 140. (b) Cluster correlations for a 2D system L = 4 x 4
with one vacancy at (m,n) = (1,1). The spin-1 is used due to the
numerical complexity of the Fermi-Hubbard. While it overestimates
the correlations, qualitatively the hole remains localized. Parameters
are J/(2m) = 28 Hz, U/J = 56, Q1/J = 66.

iments is the presence of vacancies in the initial state, which
can move and disrupt the correlations. In our implementation
they are kept localized by the staggered energy structure im-
posed by the drive [c.f. Fig.[T(b)]. Tunneling into an adjacent
empty site costs €2, and is thus inhibited. While an empty
site still destroys the entanglement with its neighbours, other
non-adjacent sites can maintain cluster correlations.

Fig. B(a) compares cluster correlations for a half-filling
sample and a doped array for a 1D system (tunneling allowed
along one direction). Sites away from the hole maintain high
stabilizer values. A similar result is seen in Fig. 3(b) for 2D.
Given the complexity of solving full Fermi-Hubbard dynam-
ics in this case, we instead use an effective spin-1 model to

account for holes (c.f. Supplementary E). While that model
overestimates the correlations at sites affected by the vacan-
cies [see green plot in Fig. Bfa)], overall it shows that away
from them the correlations persist.

In addition to the above benchmarks, we also compute ro-
bustness of stabilizers to increasing system size and external
confinement (Supplementary F).

Collective cluster measurements and OTOCs. Probing sta-
bilizers directly requires measurements of multi-body corre-
lations with single-site resolution. While the resolution is re-
quired for one-way quantum information processing, at least
for initial test-bed experiments, it is possible to partially by-
pass this requirement by using inherent properties in the Ising
model combined with global probes. Notice that,

(K); (1) = 22D+ (p(0)] ==t | 82 TT 57 | e = |(0)),
(5,k)

= 2(—1)P ((0)] e/t (et Herte Greiflecte ) =t fy(0))
&)

implying that the many-body measurement can be replaced
with a local one by evolving to twice the cluster time in-
stead (c.f. Supplementary G). Measuring over a region 5‘}% =
> jeR SJ”” yields mean values of cluster correlations in R,
which offers a metric for cluster state quality there. This does
not contain information about the entire state, but is sufficient
to gauge fidelity of computation using the region R. While the
sign of the Ising interaction inside the brackets of Eq. (3)) does
not matter, the time-reversal of the Hamiltonian can be im-
plemented, thanks to the tunability of the interaction, provid-
ing additional benchmarking capability and a more objective
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FIG. 4: Dynamics of average cluster correlations for a 1D tunnel-
ing lattice of L = 8, at half-filling (blue) and one vacancy on site
j = 1 (red), using Fermi-Hubbard. Solid lines generate the clus-
ter state directly, and measure the local correlators. We then average
across all sites. Dotted lines use the time-reversal protocol of Eq. (),
relying upon only collective measurements of (S‘ ¥). Parameters are
J/(2m) =22Hz, U/J = 115,Q/J = 140.

comparison.

After evolving to the cluster time, we quench the drive,
Q — V2U? — Q2, causing the interaction to flip its sign,
H, vy — —H, 2z [the Ising model is realized with the spin-echo
of Eq. (B)]. If the mapping between the Fermi-Hubbard and
superexchange were exact, then at ¢ = ¢, we implement a uni-
tary reversal and measure ideal cluster correlations. Doping or
non-ideal implementation of the Ising would yield lower val-
ues. Fig.[d]compares the dynamics of cluster correlations with
exact many-body measurements and the collective measure-
ment (S)(t) (R = N). With half-filling, we see near-perfect
agreement. For a doped array, the collective measurements
overestimate the correlations, but still maintain the overall
trend.

The goal of the above protocol is to gauge the cluster state
quality. To actually implement quantum computation after
cluster states are generated requires a non-trivial measurement
sequence [46, 47]]. Since the focus of this work is cluster
state generation instead of one-way quantum computation, we
leave the details of the latter to future work.

As a side remark, the ability to generate time-reversed
evolution allows to measure out-of-time-ordered correlations
(OTOCs) [48H50]. An OTOC is defined as Cyv (t) =
(W (t)'VIW (t)V), where W,V are commuting operators
and W (t) = e We~ it OTOCs quantify how quantum
information is scrambled over many-body degrees of free-
dom after a quench [48]. OTOCs have also been considered a
proxy of quantum chaos [51]]. In our system, OTOCs can be
measured if we choose V = %, since (W (¢)TVIW (t)V) =
—L(W &)V (t))/2, and W = e~ 5" is a collective ro-
tation for some angle 6, which is straightforward to realize
experimentally. Different OTOCs can be measured by using
different rotation axes or angles.

Experimental parameters and implementations. One of the
most promising systems to implement our proposal is the 3D
optical lattice clock, operated with fermionic Strontium-87
atoms in a cubic lattice at the *magic-wavelength’ a ~ 406
nm [52]. Along the directions where we want tunneling, we

assume lattice confinement of V/E, ~ 15 — 20 (F, the re-
coil energy), to obtain J ~ 10 x 27 Hz, and much deeper
confinement Vy/E, 2 100 along other directions. For a scat-
tering length Uy R 69ag [30] (ag the Bohr radius), interaction
strength is U/J ~ 100. The Rabi frequency needs to satisfy
both Q ~ U, and |U — Q|/J > 1 to allow fast cluster state
generation t. ~ 0.1 s compared to the current experimental
coherence time of ~ 10 s [30]], and to guarantee the validity
of the superexchange model.

The spin degree of freedom one can be encoded in the two
long-lived 1.5y (g) — 3 Py(e) clock states in a nuclear-spin po-
larized gas. Pauli exclusion prevents undesirable e-e inelas-
tic collisions in the lowest band. The current experimental
excited-state lifetime (limited by light scattering) is ~ 10
s [30ll, which is 2 orders of magnitude larger than ¢..

The achievable SOC phase depends on |k¢| = 27/Ac, with
Ac the transition wavelength. For the 'Sy, — 2P, states in
the magic-wavelength lattice, the A\c¢ ~ 698 nm clock laser
naturally imparts the required SOC. To achieve the necessary
7 phase in 1D, one needs to suppress tunneling along the 7,
Z lattice directions, enable tunneling along # and incline the
laser so that al;c -& = 7. For 2D, one enables tunneling along
Z, ¢, points the laser in that plane at 45°, and likewise in-
clines until the projection along both equals 7. While the cur-
rent magic-wavelength lattice requires a slightly larger |Ec|
for 2D, it can be adjusted through the use of accordion lattices
to increase a, or by using a separate laser for each axis.

Alternatively, one can use two nuclear-spin states in the
1Sy ground-state manifold and Raman transitions to generate
the desired SOC, with the one-photon detuning of the Raman
lasers set sufficiently large for a long coherence time [53]]. In
particular, the 1Sy — 1 P} at A\¢ ~ 461 nm is appealing since
it naturally realizes a SOC phase difference of ~ 7 in each
direction when the laser is oriented along the (1,1, 1) spatial
axis, providing the framework for a 3D cluster state.

Conclusions and outlook. We proposed a protocol to gener-
ate macroscopic cluster states in 3D lattice arrays of ultracold
atoms via dynamical evolution. The progress of individual
atom control and manipulation offered by quantum gas mi-
croscopes [54, 53], optical tweezers [56] as well as the recent
capability of micron-resolution spatial imaging with submil-
lihertz frequency resolution in optical lattice clocks [28] are
already allowing experiments to prepare high-fidelity Mott in-
sulators needed for high quality cluster states. Combined with
long-coherent times offered by AEs, our protocol can open
a path for first proof-of-principle demonstrations of one-way
computing schemes in the near future.
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