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Complex nonlinear models are typically ill-conditioned or sloppy ; their predictions are significantly
affected by only a small subset of parameter combinations, and parameters are difficult to reconstruct
from model behavior. Despite forming an important universality class and arising frequently in
practice when performing a nonlinear fit to data, formal and systematic explanations of sloppiness
are lacking. By unifying geometric interpretations of sloppiness with Chebyshev approximation
theory, we rigorously explain sloppiness as a consequence of model smoothness. Our approach
results in universal bounds on model predictions for classes of smooth models, capturing global
geometric features that are intrinsic to their model manifolds, and characterizing a universality
class of models. We illustrate this universality using three models from disparate fields (physics,
chemistry, biology): exponential curves, reaction rates from an enzyme-catalysed chemical reaction,
and an epidemiology model of an infected population.

Complex nonlinear models used to simulate and pre-
dict experimentally observed phenomena often exhibit a
structural hierarchy: Perturbing a few model parame-
ter combinations drastically impacts predictions, whereas
most others can vary widely without effect. Such ill-
conditioned models are called sloppy. Sloppy models ap-
pear to be common, arising in many areas of physics.
In critical phenomena, this hierarchy of importance ex-
plains the parameter scaling with coarsening for diffusion
and the Ising model of magnetism [1]. In accelerator
physics, linear combinations of the multitude of tunable
beam-line parameters exhibit a geometric hierarchy of
importance [2]. Exponential curve fitting, a notoriously
ill-conditioned problem, poses a significant challenge, e.g.
finding correlators in lattice QCD [3, 4]. Sloppy models
are not confined to physics, and in fact appear in sys-
tems biology [5–7], insect flight [8], power systems [9, 10],
machine learning [11], and many other areas [12]. Un-
derstanding why sloppiness occurs can therefore connect
models used across disparate fields.

There are many well-studied cases for insensitivity of
model predictions to particular combinations of parame-
ters. Structural identifiability describes systems for which
parameters can be analytically exchanged for one an-
other [13, 14]. Separation of scales, singular perturba-
tions, and continuum limits can make the behavior at
a particular time or distance region depend only on a
subset of the underlying parameters [15–17]. Universal
critical behavior can yield effective parameter compres-
sion on long length scales near continuous transitions [1].
However, these comprehensible sources of sloppiness do
not explain the generality of the phenomenon, nor do
they offer a rigorous framework by which to quantify the

hierarchy of parameter importance. In this paper, we
address the generic sloppiness of multiparameter non-
linear models in the absence of particular mechanisms
or small parameters. We unify recently developed geo-
metric descriptions of sloppiness [12] with classical ideas
from polynomial approximation theory [18]. We posit
that in many cases, sloppiness is fundamentally linked to
the smoothness of the underlying model, and provide a
rigorous description of this connection.

The hierarchy of parameter importance that character-
izes sloppy models manifests geometrically. Given some
model, the space of all possible predictions for all in-
put parameters forms a geometric object know as the
model manifold (Fig. 1(a)), whose metric is given by the
Fisher Information (a measure of the distinguishability
between predictions [19, Ch. 2] which sets a lower bound
on the possible variance of parameter estimates for an un-
biased prior through the Cramér–Rao bound). Studying
the geometry of model manifolds yields fruitful informa-
tion for several reasons: (1) the dominant components
reflect emergent behavior of the models (how the micro-
scopic interactions do or do not produce macroscopic be-
havior [1]), (2) the boundaries represent reduced-model
approximations [20], and (3) knowledge of the mani-
fold geometry leads to more efficient data fitting meth-
ods [21]. Model manifolds typically form striking hyper-
ribbons [22], so-called because, like ribbons, successive
widths follow a geometric decay: They are much longer
than they are wide, much wider than they are thick, etc.,
yielding effective low-dimensional representations. Be-
cause directions along the model manifold correspond to
specific parameter combinations, there is a direct con-
nection between the hyperribbon nature of model man-
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ifolds and the structural hierarchy of model parameters.
Understanding why model manifolds form hyperribbons
therefore leads to an understanding of why this structural
hierarchy in parameter importance exists.

Consider a nonlinear model that depends continu-
ously on K input parameters θ = (θ1, . . . , θK) to gen-
erate predictions yθ(t). If we consider the model pre-
dictions at N fixed points, {t0, . . . , tN−1}, then our pre-
dictions for parameters θ form an N -dimensional vector
Y (θ) = (yθ(t0), . . . , yθ(tN−1) = (Y0, . . . , YN−1). We use
Y to represent the model manifold, defined as the space
of all possible predictions for all possible parameter com-
bination (so all allowed Y (θ)). Specifically, model man-
ifold Y is a K-dimensional surface embedded in an N -
dimensional prediction space.

To bound the model manifold Y and study its
geometry, we consider polynomial approximations of
model yθ. Without loss of generality, we shift and
rescale the points so that {tk}N−1k=0 ⊂ [−1, 1]. Let
{φj}∞j=0 be a complete polynomial basis, and sup-
pose that model yθ(t) is decomposed into this basis:
yθ(t) =

∑∞
j=0 bj(θ)φj(t). Let pN−1(t; θ) be the truncated

series representing the polynomial approximation to
model yθ(t). Note that the truncation is set by the num-
ber of sampled points, N . We can view the coefficients
(b0(θ), . . . , bN−1(θ)) as a set of N parameters. Now, let
P (θ) = (pN−1(t0), . . . , pN−1(tN−1)) = (P0, . . . , PN−1)
define the polynomial manifold P. Thus, we have model
manifold Y and a polynomial manifold P.

By definition, P (θ) = Xb, whereXij = φj−1(ti−1) and
b = (b0, . . . , bN−1)T . Here, X forms a linear map from
the space of polynomial coefficients to the space of possi-
ble predictions, and is determined by the chosen polyno-
mial basis and fixed points ti. The singular values of X
can be used to understand the hyperribbon structure of
the polynomial manifold P. Suppose, for example, that
‖b‖2 < r, so that the coefficient space is bounded in S,
an n-sphere of radius r. The action of X on S distorts
it into a hyperellipsoid HP . If `j(HP ) is the diameter of
the jth cross-section of hyperellipsoid HP , then

`j(HP ) = 2rσj(X), (1)

where σj(X) are the ordered singular values of X. When
X has rapidly decaying singular values, HP has a hy-
perribbon structure because there is a strict hierarchy
in successive widths. Accounting for the polynomial ap-
proximation error ‖yθ − pN−1‖∞, where ‖ · ‖∞ is the L∞

norm on [−1, 1], we can define a hyperellipsoid HY that
must enclose model manifold Y, where the cross-sectional
widths are given by

`j(HY ) = 2rσj(X) + 2‖y − pN−1‖∞. (2)

In this way, we find that any model manifold Y is
bounded within a hyperribbon whenever σj(X) decays

geometrically and ‖y − pN−1‖∞ is small enough. A fun-
damental question is whether it matters which polyno-
mial basis or which set of time points are chosen to de-
fine HP and HY . The hyperribbon structure of Y, of
course, does not depend on our representation of yθ, but
rather on intrinsic properties of the model, such as its
smoothness. For example, if for every t0 ∈ [−1, 1], the
Taylor expansion of yθ at t0 has a large enough radius
of convergence, any sequence of polynomial interpolants
with N distinct interpolating points converges to yθ at a
geometric rate with N [18]. This fact underpins the qual-
itative observation in [12, 22] that certain analytic models
have manifolds bounded within hyperribbons. Here we
make that observation rigorous. We consider two such
choices. First, we choose our basis functions {φj}∞j=0 as
the Chebyshev polynomials. Truncated Chebyshev ex-
pansions converge to yθ at an asymptotically optimal rate
for polynomial approximation [18]. As we show below,
this rate controls the magnitude of σj(X) in Eq. (2), and
can be used to explicitly bound the cross-sectional widths
of HY . Our bounds deliver an outright description of a
hyperribbon that must contain Y.

We also analyze the case where {φj}∞j=0 are the mono-
mials and pN−1 is the truncated Taylor series expansion
of yθ. In this case, we observe that the numerical com-
putation of σj(X) results in excellent practical and uni-
versal bounds on the prediction space for large classes of
models.

Chebyshev expansions. Suppose that yθ has a
convergent Chebyshev expansion, so that it is given by
yθ(t) =

∑∞
j=0 cj(θ)Tj(t), where Tj(t) = cos(j arccos t) is

the degree j Chebyshev polynomial [18, Ch. 3]. We can
approximate yθ with a degree ≤ N − 1 polynomial by
truncating the Chebyshev series after N terms:

pN−1(t; θ) =

N−1∑
j=0

cj(θ)Tj(t). (3)

Truncated Chebyshev expansions have near-best global
approximation properties, and explicit bounds on
‖yθ − pN−1‖∞ are known when yθ is sufficiently smooth.

We first consider the case where yθ is analytic in an
open neighborhood of [−1, 1]. Such a region contains a
Bernstein ellipse Eρ, defined as the image of the circle
|z| = ρ under the Joukowsky mapping (z + z−1)/2. It
has foci at ±1, and the lengths of its semi-major and
semi-minor axes sum to ρ. The polynomial in Eq. (3)
converges to yθ as N →∞ at a rate determined by ρ:

Theorem 1. Let M > 0 and ρ > 1 be constants and
suppose that yθ(t), t ∈ [−1, 1], is analytically continuable
to the region enclosed by the Bernstein ellipse Eρ, with
|yθ| ≤M in Eρ, uniformly in θ. Let pN−1(t; θ) be as in
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(a) (b) (c)
Models Model Manifolds

FIG. 1. Model manifold of three disparate models: (1) exponential curves, (2) reaction velocities of an enzyme-catalysed
reaction, and (3) the infected population in an SIR model. The models are evaluated at 11 equally spaced points on [0, 1], and
obey the smoothness condition in Eq. (10), with C = 1 and R = 2. (a) An illustration of each model, where each line represents
the respective model predictions with a different set of parameters. (b) The model manifolds are all bounded by the same
hyperellipsoid, and so the two axes represent the first and second longest hyperellipsoid axes. Note that, in all three models,
only values greater than 0 are physically significant. This constraint manifests itself geometrically through their location in the
hyperellipsoid. (c) The lengths of each model manifold along the eleven axes of the hyperellipsoid HP in Eq. (11). Black points
are the numerically computed lengths of HP , given by 2C

√
Nσj(V D) in Eq. (11), and include the error term from Eq. (2)

(note the kink at the second to last point), forming an upper bound on possible lengths of the manifolds. The explicit decay
rate of the Chebyshev-based bound (black dotted line) is based on the fact that models obeying Eq. (10) are analytic in the
ellipse Eρ(ζ). (Here, ρ(ζ) ≈ 3.81.) It captures the decay rate of σj(V D) for j < 11, and closely follows the true decay rate in
the successive widths of the various manifolds.

Eq. (3). Then,

(i) ‖yθ − pN−1‖∞ ≤
2Mρ−N+1

ρ− 1
, (4)

(ii) |c0| ≤M, |cj(θ)| ≤ 2Mρ−j , j ≥ 1. (5)

Proof. For a proof, see Theorem 8.2 in [18].

To exploit the decay of the coefficients in Eq. (5),
we define modified coefficients c̃j = ρjcj . We then
have that polynomial predictions P (θ) = X c̃, where
X = JD, Jij = Tj−1(ti−1), and D is diagonal
with entries Djj = ρ−(j−1). By (5), we have that
‖c̃‖2 < 4M

√
4N − 3. This implies that the polynomial

manifold P is bound in a hyperellipsoid HP . By Eq (1),
we have that `j(HP ) = 8M

√
4N − 3σj(X). To bound

σj(X) explicitly, we first prove a conjecture proposed
in [23]:

Theorem 2. Let S ∈ RN×N be symmetric and positive
definite. Let E ∈ RN×N be diagonal with Eii = εi−1 and
0 < ε < 1. If λ1 ≥ λ2 ≥ · · · ≥ λN are the ordered eigen-
values of ESE, then λm+1 = O(ε2m). Specifically,

λm+1 ≤
ε2m

1− ε2
max

1≤j,k≤N
|Sjk| , 1 ≤ m ≤ N − 1. (6)

Proof. [24] Consider the rank m matrix

Sm = S(:, 1:m)S(1 :m, 1:m)−1S(1 :m, :), (7)

where 1≤m≤ N−1, and the notation M( : , 1:m) denotes
the submatrix of M consisting of its first m columns.
Clearly, Sm is well-defined because S(1 :m, 1:m) is a
principal minor of a positive definite matrix and is
therefore invertible. Moreover, it can be verified that
(S − Sm)jk = 0 for 1 ≤ j, k ≤ m.

Since ESE is positive definite and rank(Sm) = m, we
know that λm+1 ≤ ‖E(S − Sm)E‖2, where ‖ · ‖2 denotes
the spectral matrix norm [25, Ch. 2]. Using ‖ · ‖F to
denote the Frobenius norm, we have

λ2m+1 ≤ ‖E(S − Sm)E‖22 ≤ ‖E(S − Sm)E‖2F

=

N∑
j=m+1

N∑
k=m+1

ε2(j−1)+2(k−1) |Sjk − (Sm)jk|2

≤ ε4m

(1− ε2)2
max

1≤j,k≤N
|Sjk − (Sm)jk|2

≤ ε4m

(1− ε2)2
max

1≤j,k≤N
|Sjk|2 ,

where the last inequality comes from the fact that the
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block S(m+1:N,m+1:N)− Sm(m+1:N,m+1:N) is
the Schur complement of S(1 :m, 1:m) in S [25].

Applying Theorem 2 to XTX = DJTJD, we have that
for j > 1, σj(X) ≤

√
Nρ−j+2/

√
ρ2 − 1, where we have

used the fact that |Tk(t)| ≤ 1 for k ≥ 0 and −1 ≤ t ≤ 1.
It follows from Equations (2) and (4) that predictions for
yθ(t) are bounded by a hyperellipsoid HY , with

`j(HY ) ≤ 2M
√

4N2 − 3Nρ−j+2√
ρ2 − 1

+
4Mρ−N+1

ρ− 1
, (8)

for 2 ≤ j ≤ N, i.e.,

`j(HY ) = O(ρ−j + ρ−N ). (9)

These bounds indicate that the hyperribbon structure of
HY is controlled by ρ, a parameter characterizing the an-
alyticity of the model. As ρ becomes larger, bounds on
the widths of the successive cross-sections of HY must de-
cay more rapidly: In principle, HY becomes successively
thinner and more ribbon-like.

When yθ is not analytic on an open neighborhood of
[−1, 1], the decay rate of σj(JD) is instead controlled by
the smoothness of yθ on [−1, 1]. Furthermore, when we
consider models with two experimental conditions (for
instance, time and temperature) these bounds can be ex-
tended to the two-dimensional case. We provide more
discussion of non-analytic and two-dimensional cases in
the supplementary materials.

Taylor expansions. The degree N−1 truncated Tay-
lor polynomial of yθ is pN−1(t) =

∑N−1
k=0 ak(θ)(t− t0)j ,

where ak(θ) = y
(k)
θ (t0)/k!. We describe the analyticity of

yθ using the following condition: For all N ≥ 1,

N−1∑
k=0

(
Rk

k!

dkyθ(t)

dtk

)2

< C2N, (10)

where C > 0,R > 1 are constants in θ. A straightfor-
ward but tedious calculation outlined in the supplemen-
tal material [26] shows that the lengths of the resulting
hyperellipsoid are given by

`j(HP ) ≤ 2CN√
R2 − 1

R−j+2. (11)

To apply our results, we selected three models from
quite disparate fields (physics, chemistry, biology). This
was done deliberately, to illustrate the universal nature of
our results. In all three cases, the context for model con-
struction is different, and yet the underlying smoothness
of each can be used to relate them to a single universal
bound.

1. Exponential curves, such as for radioactive decay [12,
21] and calculating correlators in lattice QCD [3,
4]. Here, we set yθ(t) =

∑10
α=0Aα exp (−λαt), where

model parameters are the amplitudes Aα and decay
rates λα, and t represents time.

2. Reaction velocities of an enzyme-catalysed chemical
reaction [27, 28]. This model can be expressed as
yθ(t) = (θ1t

2 + θ2t)/(t
2 + θ3t+ θ4) [12], where t repre-

sents the substrate concentration. This model stands
in for steady-state behavior of complex chemical reac-
tion networks in engineering and ecology [29].

3. The infected fraction of a population in an SIR epi-
demiology model [30]. This model predicts the size
of a population that is susceptible to infection (S(t)),
infected (I(t)), and recovered from infection (R(t)).
These are expressed through three coupled differential
equations: Ṡ = −βIS/Ntot, İ = βIS/Ntot − γI, and
Ṙ = γI, where model parameters β and γ represent
the rates of infection and recovery, and additional pa-
rameters include the total population Ntot, and initial
infected and recovered population. At all times, S(t),
I(t) and R(t) sum to Ntot, and we set yθ(t) = I(t).
This model serves to represent classes of models in-
volving numerical ODEs, which occur in power sys-
tems, e.g. for systems biology [5, 6] and power sys-
tems [31, 32].

The model manifolds for these three models are shown
in Fig. 1. They are all contained within the same hyper-
ellipsoid, as shown in Fig. 1(b), and so share the same
universal bound. The hyperribbon structure of the mani-
folds is accurately captured by the numerical bound from
Eq. (11), and the decay in successive manifold widths
are clearly captured by the Chebyshev rate from Eq. (8).
These three models were derived in very different con-
texts and exhibit what would appear to be fundamen-
tally different properties, yet they all share a fundamen-
tal property: in all cases, there is a structural hierar-
chy in their model manifolds as determined by a univer-
sal bound. Because of the geometric decay in successive
manifold widths, low-dimensional representations (as de-
termined by the longest directions) capture the large vari-
ance in model predictions. This is because they are all
part of the same universality class, that of sloppy models.

Our results explain a fundamental feature of the global
geometry of sloppy models, and establish a rigorous
framework that explains the role of model smoothness in
the observation of sloppiness. An important implication
of our results is that any model that satisfies the smooth-
ness condition in Eq. 10 is guaranteed to be bounded in
a manifold that exhibits this hierarchical structure. As
such, it serves as a natural test of sloppiness. The impli-
cations of sharper bounds that depend on time-points are
the focus of future work, as they open up far-ranging ap-
plications in optimizing the experimental design to focus
data collection at time-points that maximize information
extraction by minimizing the decay rate in hyperribbon
widths. Furthermore, sloppy features appear in proba-
bilistic models (such as the Ising Model of atomic spins in
statistical physics and the dark energy cold dark matter
ΛCDM cosmological predictions of the cosmic microwave
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background) and so an extension of this approach is cur-
rently underway to explain all general, probabilistic mod-
els.
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