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Abstract

We present the incorporation of a surrogate Gaussian Process Regression (GPR) atomistic model

to greatly accelerate the rate of convergence of classical Nudged Elastic Band (NEB) calculations.

In our surrogate model approach, the cost of converging the elastic band no longer scales with the

number of moving images on the path. This provides a far more efficient and robust transition

state search. In contrast to a conventional NEB calculation, the algorithm presented here eliminates

any need for manipulating the number of images to obtain a converged result. This is achieved

by inventing a new convergence criteria that exploits the probabilistic nature of the GPR to use

uncertainty estimates of all images in combination with the force in the saddle point in the target

model potential. Our method is an order of magnitude faster in terms of function evaluations than

the conventional NEB method with no accuracy loss for the converged energy barrier values.

The Nudged Elastic Band (NEB) algo-

rithm is the most popular method for calcu-

lating transition states in chemical systems

[1–3]. This algorithm is used to find mini-

mum energy pathways (MEP) for the transi-

tion between reactants and products, identi-

fying the energy associated with the barrier

separating these two states. Many variants

of the NEB algorithm have been proposed in

the last two decades [3–10]. All of these al-

gorithms rely on an elastic band consisting of

interpolated images of the atomic structure,

known as moving images. The images are

hooked by a spring constant and their posi-

tions are optimized by following the gradient

of the potential energy surface (PES) while

obeying the forces imposed by these springs.

A climbing image (CI), without spring forces
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and an added force traveling up the gradient

along the tangent of the path, can also be

included in order ensure the highest energy

point is included in the band [3]. The op-

timization of the path is performed through

an iterative process in which all the images

are moved and evaluated in each iteration.

The coupled iterative nature of the process is

very costly, requiring several hundred func-

tion calls for the forces even for systems con-

taining few images and degrees of freedom,

e.g. describing a single particle diffusion with

10 images.

Further, force evaluations can be com-

putationally very expensive for the first-

principle electronic structure calculations.

For this purpose, there has been significant

work done to build machine learning (ML)

surrogate models for atomistic systems [11–

16]. These methods function by producing a

surrogate model of the PES, which closely ap-

proximates the target potential in the region

of interest, significantly reducing the number

of necessary function calls to achieve conver-

gence. Among all of these models, the crit-

ical steps are: (1) moving the atomic posi-

tions along the surrogate PES using tradi-

tional algebraic or derivative-based solvers,

(2) evaluating analytically the forces at the

new positions and (3) updating the model

with the evaluated point(s) in order to im-

prove the predicting capabilities of the sur-

rogate model. This iterative process is per-

formed until convergence is reached. The

premise underlying this protocol is that the

optimization cost of the PES surrogate is es-

sentially negligible compared to the cost of

an electronic structure calculation.

The aforementioned strategy has served to

accelerate NEB calculations using neural net-

works (NN) as proposed by Peterson et al.

[12] and using GPR by Jónsson et al. [13].

Both approaches have demonstrated the abil-

ity to reduce the high computational cost of

the classical NEB methods. In particular,

Jónsson and coworkers introduced a GPR-

assisted algorithm that evaluates the geome-

try of the image presenting the highest uncer-

tainty of the optimized predicted path each

time the NEB is converged in the surrogate

model PES. This is known as the one-image-

evaluation (OIE) method and surpasses in

performance the all-images-evaluated (AIE)

method, which relies on calculating all the

images of the predicted NEB at each iteration

[13]. However, even in this case, all moving

images must be evaluated at least once to en-

sure that the convergence criteria have been

satisfied. To the best of our knowledge this

also holds true for the other NEB algorithms

proposed to date.

One of the main advantages of using GPR

is that, as a probabilistic model, the uncer-

tainty estimate for the predictions can be
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quantified. In this letter, we demonstrate

that the efficiency of the current NEB al-

gorithms can be substantially improved by

choosing an acquisition function that opti-

mally utilizes the prediction obtained by the

GPR model, i.e. the Gaussian posterior dis-

tribution. Here, we propose an algorithm

that uses the GPR estimates to detect the

geometries of interest to efficiently probe the

PES towards a converged MEP. Our algo-

rithm follows the same principles as the afore-

mentioned OIE method proposed by Jónsson

and coworkers [13] to avoid calculating all the

images of the predicted path in each itera-

tion. The method presented here exploits the

regression estimates to define a convergence

criterion which is independent of the num-

ber of NEB images, therefore solving one the

major problems of the previous classical and

machine learning NEB methods. This algo-

rithm is implemented in CatLearn [17], which

is an open-source Python package for ma-

chine learning applications specific to atomic

systems. This is, by design, built to inter-

face with the Atomistic Simulation Environ-

ment (ASE) [18] and therefore can be easily

interfaced with the majority of the electronic-

structure calculators, such as CASTEP [19],

GPAW [20], Quantum Espresso [21], SIESTA

[22], and VASP [23, 24].

Our GPR model considers the positions of

the atoms as the descriptors X = [x1, . . . ,

xN ] and is trained with their corresponding

energies (e) and first derivative observations

(δi), combining both observations into a vec-

tor y = [e δ1 . . . δN ].

The predicted function is a priori defined

as the Gaussian process:

f(x) ∼ GP(P (x), k(x, x′)), (1)

where k(x, x′) is the kernel (covariance func-

tion) and P (x) is the prior function.

When incorporating first derivative ob-

servations to the GP, the covariance matrix

takes the form

K(x) =

 K(x,x) Kgd(x,x)

Kgd(x,x)> Kdd(x,x)

 ,

with elements of the block matrix being the

covariance between the coordinates (K(x,

x)), and partial derivatives of the covari-

ance with respect to the first coordinate

(Kgd(x,x)), second coordinate (Kgd(x,x)>),

and the first and second set of coordinates

(Kdd(x,x)). A more detailed explanation

of incorporating derivative observations into

GPR can be found in Ref. [25].

Our dataset is defined as D =
{{

xn, en,

δn, θ
}}

N
n=1, where θ contains the set of hy-

perparameters of the model. The predicted

mean and variance of the GP are given by

E[f(x)|D] = k(x)[K(x) + σ2
nI]
−1y (2)
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and

V[f(x)|D] = k(x, x)−k(x)[K(x)+σ2
nI]
−1k(x),

(3)

respectively, where I is the identity matrix

and σ2
n is a regularization parameter. The

predicted mean (Eq. 2) provides the predic-

tion of the energy for a given position whilst

the predicted variance (Eq. 3) offers an esti-

mate of the uncertainty of the same process.

The predicted forces are computed using fi-

nite differences with a step size of 10−4 Å.

The model parameters selected to describe

the GP are included in the Supplemental Ma-

terial [26].

FIG. 1. Comparison between the (a) classical CI-NEB and (b) machine learning NEB (ML-NEB)

methods. The performance of both algorithms is illustrated in the two-dimensional Müller-Brown

PES. Predicted MEP is included at the bottom of each PES to show the evolution of the energy

profile for the elastic band with respect to the number of function calls.

A comparison between the classical NEB

and our machine learning accelerated (ML-

NEB) methods on the two-dimensional

Müller-Brown potential is shown in Figure

1. In this example, we used 9 moving im-

ages to describe the transition from the ini-
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tial state (IS) to the final state (FS). In the

classical NEB method, final convergence is

achieved when the maximum forces of the

structure of the ith NEB image (max|FNEB
i |)

perpendicular to the path are below the con-

vergence criteria. This convergence crite-

rion (max|FNEB
i |<0.05 eV/Å) is satisfied af-

ter 243 force calls with an energy barrier

of 1.060 eV (Figure 1a). The same energy

barrier value is obtained by our ML-NEB

method after only 11 function calls (see Fig.

1b). In Fig. 1b we illustrate the evolution of

the predicted PES and energy profile along

the reaction coordinate (red circles) from the

IS to the FS obtained after 1, 3, 10 and 11

iterations of our surrogate machine learning

model. Our algorithm starts by evaluating

an image along the initial interpolated path

that is located at one third distance from the

end-point with highest energy. This prevents

numerical problems during the optimization

of the NEB due to a poor initial representa-

tion of the predicted PES when the model

is trained with only the two end-points of

the transition. The model is retrained with

the energy and forces of the previously eval-

uated configurations each time a function

evaluation is performed. After training the

model, the initial path is optimized on the

predicted PES using a velocity-Verlet molec-

ular dynamics algorithm (MDMin, as imple-

mented in ASE). Once the elastic band is

converged, the energy and uncertainty esti-

mate (blue bars in Fig. 1b) for each image

along the path are stored. On the basis of

these predicted values, an acquisition func-

tion suggests the next structure to evaluate

(see white circles in Fig. 1b). In this exam-

ple, the acquisition function targets the im-

age along the predicted path with maximum

uncertainty until the uncertainty of all the

images (max|ui|) is decreased below 0.05 eV.

Once this uncertainty convergence criterion

is reached, the acquisition function targets

the highest energy image (including the un-

certainty estimate), until the maximum force

of all the relaxed atoms for the last evalu-

ated image goes below the convergence crite-

ria (max|fi|<0.05 eV/Å). This ensures that

the saddle-point is obtained with the same

accuracy as the classical CI-NEB method.

We demonstrate the performance of our

algorithm on three different atomic systems

(see Fig. 2a-c) using the Effective Medium

Theory (EMT) [27]. We apply our algorithm

using three different acquisition functions:

The first (Acq. 1) alternates between eval-

uating the image with the maximum uncer-

tainty and the image with the maximum ex-

pected energy value for the transition in each

iteration of the surrogate model. This quasi-

random sampling mechanism is performed

until both convergence criteria are satisfied

(max|ui|<0.05 eV and max|fi|<0.05 eV/Å).
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The second acquisition function (Acq. 2) is

as described above for the example in Figure

1b. The last (Acq. 3) is made of a combi-

nation of the two previous acquisition func-

tions, behaving the same as Acq. 2 until the

uncertainty convergence criterion is satisfied,

and then transitions to Acq. 1 until finding

a saddle-point.

FIG. 2. MEP for the (a) diffusion of a Au atom on an Al(111) surface, (b) diffusion of a Pt adatom

on a stepped Pt surface across the two terraces and (c) rearrangement of a Pt heptamer island

adsorbed on a Pt(111) surface obtained for the algorithms: FIRE, LBFGS, MDMin, and ML-NEB

(using the three acquisition functions presented in the main text). The number of function calls

required for each algorithm to converge are shown in bold between brackets. The top and side

views of the optimized initial and final states for each transition along with their corresponding

saddle-points are included at the top of each composition. The undercoordinated atoms of the Pt

step-edge in (b) are highlighted in blue.

Included in Fig. 2 are the optimized paths

for three different transitions using FIRE

[28], LBFGS [29], and MDMin [18] as im-

plemented in ASE, along with the ML-NEB

implementation using the three acquisition

functions described above. The different al-

gorithms provide virtually identical estimates

of the maximum transition state energy. The

same energy barrier values are also obtained

when using the classical and ML-NEB algo-

rithms, within numerical precision. The ML-

NEB method performs consistently better in

terms of function evaluations than the clas-

sical algorithms. In particular, when using

Acq. 2, the ML-NEB algorithm requires ap-

proximately 5-25 times fewer function calls
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to achieve convergence than the classical al-

gorithms (see values in brackets in Fig. 2).

The improved performance of the acquisition

function which makes the most use of the un-

certainty estimates also illustrates the poten-

tial for GP to accelerate the NEB over other

machine learning algorithms over other ma-

chine learning algorithms that do not offer an

uncertainty estimate.

FIG. 3. Comparison of the number of function evaluations required to achieve convergence with

increasing number of images for the different classical and machine learning accelerated methods.

The benchmark is performed with the classical method (using the FIRE, LBFGS and MDMin

algorithms) and the ML-NEB method (using the three acquisition functions described in the main

text). The lower panels show the average error of the predicted energy along the path obtained

by the three acquisition functions with respect to the target value of the function at the same

geometric positions as the ones predicted by the ML-NEB.

The performance of the ML-NEB method

is also tested on the previous systems by

varying the number of NEB images (see Fig.

3). The number of function calls required

to optimize the paths increases exponentially

when using the classical implementation of

the CI-NEB method. In contrast, the number

of function evaluations required by the ML-

NEB algorithm is independent of the num-

ber of moving images chosen to optimize the

path. This allows for the number of im-

ages to be optimally chosen whilst performing

the NEB optimization at no added cost and

can be done by applying similar principles to

those proposed by Hammer et al. [10] for the

classical NEB.
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In order to quantify the error magnitude

of the GPR estimates, we calculated the en-

ergy of the predicted images on the target

potential (EMT) using the same geometries

as the images along the optimized path. We

define the average error of each path as the

absolute value of the difference between the

energy calculated analytically and GPR pre-

dicted energy for the ith image along the pre-

dicted path. For the three acquisition func-

tions, the maximum error of the predictions

lies below the uncertainty convergence crite-

rion imposed (0.05 eV). The two acquisition

functions that exploit the maximum uncer-

tainty estimate before targeting the saddle-

point, Acq. 2 and 3, performed better than

Acq. 1 which alternates targets between the

maximum energy and the maximum uncer-

tainty estimates in terms of function evalua-

tions and the accuracy of the predicted path.

For stability, the calculations performed

using FIRE, MDMin and ML-NEB converged

for all three systems. However, we note that

the LBFGS algorithm seems to struggle to

find an optimal minimum for the transition

represented in Fig. 2b, except when using

11 images. We have also encountered con-

vergence issues with MDMin when perform-

ing Density Functional Theory (DFT) cal-

culations for validation [26]. Our algorithm

has also been tested on more complex reac-

tions involving bond breaking/forming using

DFT [30, 31] as implemented in VASP, also

included in the Supplemental Material [26].

Through this variety of examples, our ML-

NEB method shows great improvement with

respect to the classical optimization in terms

of robustness, accuracy, and computational

cost.

A good description of a NEB path ulti-

mately relies on including a sufficient number

of images. Trying to describe the MEP with

a small number of images can lead to con-

vergence problems when optimizing the band

on complex energy landscapes [32]. Here, we

have presented a machine learning surrogate

model that uses the GPR estimates to obtain

a converged NEB path which is independent

of the number of moving images composing

the path. This offers a dramatic improve-

ment in terms of the robustness and efficiency

with respect to the classical NEB methods.

In this work, we propose three different ac-

quisition functions in an effort to optimize the

decision making protocol in order to obtain

an accurate predicted path using the small-

est possible number of function calls. We

show that the learning rate is driven by the

form of the acquisition function and a good

selection is dependent on a balance between

exploration (reducing the uncertainty of the

predicted path) and exploitation (trying to

converge the saddle-point). The result of this

work is an algorithm which not only surpasses
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existing methods in saving function calls, but

also improves the robustness in converging an

accurate path with respect to the other al-

gorithms, by decoupling the cost in number

of function evaluations from the number of

moving images on the NEB.
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